
A LARGE-SCALE QUADRATIC PROGRAMMING SOLVER BASED ON

BLOCK-LU UPDATES OF THE KKT SYSTEM

A DISSERTATION

SUBMITTED TO THE PROGRAM IN

SCIENTIFIC COMPUTING AND COMPUTATIONAL MATHEMATICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Hanh M. Huynh

September 2008



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
SEP 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
A Large-Scale Quadratic Programming Solver Based on Block-Lu
Updates of the KKT System 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Stanford University,Institute for Computational and Mathematical 
Engineering,Stanford,CA,94305 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Quadratic programming (QP) problems arise naturally in a variety of applications. In many cases, a good
estimate of the solution may be available. It is desirable to be able to utilize such information in order to
reduce the computational cost of finding the solution. Activeset methods for solving QP problems differ
from interior-point methods in being able to take full advantage of such warm-start situations. QPBLU is a
new Fortran 95 package for minimizing a convex quadratic function with linear constraints and bounds.
QPBLU is an active-set method that uses block-LU updates of an initial KKT system to handle active-set
changes as well as low-rank Hessian updates. It is intended for convex QP problems in which the linear
constraint matrix is sparse and many degrees of freedom are expected at the solution. Warm start
capabilities allow the solver to take advantage of good estimates of the optimal active set or solution. A key
feature of the method is the ability to utilize a variety of sparse linear system packages to solve the KKT
systems. QPBLU has been tested on QP problems derived from linear programming problems from the
University of Florida Sparse Matrix Collection using each of the sparse direct solvers LUSOL, MA57,
PARDISO, SuperLU, and UMFPACK. We emphasize the desirability of such solvers to permit separate
access to the factors they compute in order to improve the sparsity of the updates. Further comparisons are
made between QPBLU and SQOPT on problems with many degrees of freedom at the solution. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

102 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



c© Copyright by Hanh M. Huynh 2008

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Michael Saunders) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Philip Gill)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Walter Murray)

Approved for the University Committee on Graduate Studies.

iii



Abstract

Quadratic programming (QP) problems arise naturally in a variety of applications. In many

cases, a good estimate of the solution may be available. It is desirable to be able to utilize

such information in order to reduce the computational cost of finding the solution. Active-

set methods for solving QP problems differ from interior-point methods in being able to

take full advantage of such warm-start situations.

QPBLU is a new Fortran 95 package for minimizing a convex quadratic function with

linear constraints and bounds. QPBLU is an active-set method that uses block-LU updates

of an initial KKT system to handle active-set changes as well as low-rank Hessian updates.

It is intended for convex QP problems in which the linear constraint matrix is sparse and

many degrees of freedom are expected at the solution. Warm start capabilities allow the

solver to take advantage of good estimates of the optimal active set or solution. A key

feature of the method is the ability to utilize a variety of sparse linear system packages to

solve the KKT systems.

QPBLU has been tested on QP problems derived from linear programming problems

from the University of Florida Sparse Matrix Collection using each of the sparse direct

solvers LUSOL, MA57, PARDISO, SuperLU, and UMFPACK. We emphasize the desirability

of such solvers to permit separate access to the factors they compute in order to improve

the sparsity of the updates. Further comparisons are made between QPBLU and SQOPT on

problems with many degrees of freedom at the solution.

iv



Acknowledgements

First and foremost, I would like to thank my advisor, Professor Michael Saunders, for his

insights and guidance. This work would not have been possible without his amazing depth

of knowledge and tireless enthusiasm. I am very fortunate to have had the opportunity to

work with him.

Special thanks go to Professor Philip Gill for his very helpful notes on quadratic program-

ming and for pointing me towards SCCM in the first place. Many thanks go to Professor

Walter Murray for his good cheer during my time here and for his many helpful insights.

I would like to thank Iain Duff for providing me with a license for MA57, and I would

also like to thank Sherry Li for providing the separate L and U solve routines for SuperLU.

For their financial support, I would like to thank the Stanford Graduate Fellowship Pro-

gram in Science and Engineering, COMSOL, the Army High-Performance Research Center,

and the Institute for Computational and Mathematical Engineering.

Finally, I would like to thank my parents for their patience and support in all that I do.

v



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Active-set methods 4

2.1 Properties of the standard form . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Properties of active-set methods . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Some existing solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 QPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 QPKWIK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 QPOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.4 QPSchur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.5 SQOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.6 Comparisons to other methods . . . . . . . . . . . . . . . . . . . . . 11

3 A block-LU method 12

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Background on the block-LU method . . . . . . . . . . . . . . . . . . . . . . 13

vi



3.3 Comparisons to the Schur-complement method . . . . . . . . . . . . . . . . 15

3.4 The augmented KKT matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Updating the block factorization . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.1 Hessian updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Sparsity of Y and Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 QP algorithm 23

4.1 The inertia-controlling method . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Updating the required vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Linear systems for the standard form . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Finding an initial feasible point . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Step length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Anti-cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Recovering from singular KKT systems 36

5.1 Basis repair and rank-revealing LU . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Threshold Partial Pivoting (TPP) . . . . . . . . . . . . . . . . . . . 37

5.1.2 Threshold Rook Pivoting (TRP) . . . . . . . . . . . . . . . . . . . . 38

5.2 Singular KKT systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 KKT repair with MA57 . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 KKT repair with LUSOL . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Fortran implementation 44

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 QPBLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 KKT factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.2 Block factors L0, U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5.3 Block factors Y , Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



6.5.4 Block factor C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5.5 Refactorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Interface to third-party solvers . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.1 Third-party solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Computational results 61

7.1 Problem data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Computing platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Growth of nonzeros in Y , Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.4 Background on performance profiles . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Pivot threshold for third-party solvers . . . . . . . . . . . . . . . . . . . . . 69

7.6 Comparisons of third-party solvers . . . . . . . . . . . . . . . . . . . . . . . 71

7.7 Comparisons to SQOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Contributions, conclusions, and future work 84

Bibliography 86

viii



List of Tables

2.1 A summary of some existing active-set QP solvers. . . . . . . . . . . . . . . 9

6.1 Summary of sparse linear system solvers used in this study. . . . . . . . . . 56

6.2 Obtaining the sparse linear system solvers used in this study. . . . . . . . . 56

6.3 Summary of features of the sparse linear solvers used in this study. . . . . . 57

6.4 QPBLU default options for LUSOL. . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 QPBLU default options for MA57. . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 QPBLU default options for PARDISO. . . . . . . . . . . . . . . . . . . . . . . 59

6.7 QPBLU default options for SuperLU. . . . . . . . . . . . . . . . . . . . . . . 60

6.8 QPBLU default options for UMFPACK. . . . . . . . . . . . . . . . . . . . . . 60

7.1 CPU times for QPBLU and SQOPT for large, varying degrees of freedom . . 74

7.2 CPU times for QPBLU and SQOPT on the deter problem set . . . . . . . . 77

7.3 Summary of the LPnetlib problems . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 CPU times for QPBLU-MA57 on LPnetlib . . . . . . . . . . . . . . . . . . . 81

7.5 CPU times for QPBLU on LPnetlib . . . . . . . . . . . . . . . . . . . . . . . 83

ix



List of Figures

6.1 Organization of modules for QPBLU. . . . . . . . . . . . . . . . . . . . . . . 47

7.1 Example of growth of nonzero elements in Y , Z: scsd6 . . . . . . . . . . . . 64

7.2 Example of growth of nonzeros in Y , Z: stocfor2 . . . . . . . . . . . . . . . 65

7.3 Example of growth of nonzeros in Y , Z: fit2d . . . . . . . . . . . . . . . . . 66

7.4 Example of growth of total nonzeros in Y , Z: fit2d . . . . . . . . . . . . . . 67

7.5 Performance profile for QPBLU using MA57 . . . . . . . . . . . . . . . . . . 70

7.6 Performance profile for QPBLU on LPnetlib . . . . . . . . . . . . . . . . . . 72

7.7 CPU times for QPBLU and SQOPT for large, varying degrees of freedom . . 75

7.8 CPU times for QPBLU and SQOPT on the deter dataset . . . . . . . . . . 76

x



Chapter 1

Introduction

1.1 Statement of the problem

The topic of interest of this paper is the quadratic programming (QP) problem of mini-

mizing a quadratic objective function subject to linear constraints and bounds. Quadratic

programming problems may be stated in many equivalent forms. We define the standard

QP problem to be

minimize
x∈Rn

cTx + 1
2xTHx

subject to Ax = b (1.1)

l ≤ x ≤ u,

where the n×n Hessian matrix H is assumed to be symmetric, A is an m×n sparse matrix,

c ∈ Rn, b ∈ Rm, l ∈ Rn, and u ∈ Rn. Elements lj and uj may be taken as −∞ or +∞ if no

bounds are present for these variables, and lj = uj if fixed variables are present.

We assume that A is of full rank. In practice, it may be necessary to apply a prepro-

cessing phase to A (such as those discussed in [54]) in order to ensure this property. For

instance, rows of A may be eliminated to remove redundancies, or slack variables may be

introduced.

Quadratic programming problems are typically classified as being convex or non-convex,

depending on whether H is positive semidefinite or indefinite. In addition, we shall say that

a quadratic programming problem is strictly convex if H is positive definite.

1



CHAPTER 1. INTRODUCTION 2

1.2 Optimality conditions

A triple (x, λ, z) is said to satisfy the first-order Karush-Kuhn-Tucker (KKT) conditions

for (1.1) if

Ax = b (1.2)

z = g(x)−ATλ (1.3)

min(x− l, z) = 0 (1.4)

min(u− x,−z) = 0, (1.5)

where g(x) = c+Hx is the gradient of the objective and z is the vector of reduced gradients.

Conditions (1.4) and (1.5) enforce the bounds l ≤ x ≤ u as well as the complementarity

conditions

(x− l)Tz = 0

(u− x)Tz = 0.

1.3 The dual problem

Duality provides an alternative formulation of a problem that may be more convenient

computationally or that may be of theoretical interest. The dual formulation of the QP in

standard form is

maximize
λ,x,v,w

bTλ + lTv − uTw − 1
2xTHx

subject to ATλ + v − w = Hx + c (1.6)

v, w ≥ 0.

It is important to note that if the primal problem is not convex then it might not be

possible to derive the solution of the primal problem from the solution of the dual. See [31],

for instance, for a more detailed discussion of the dual transformation.



CHAPTER 1. INTRODUCTION 3

1.4 Applications

Quadratic programming problems arise naturally in a variety of applications, such as port-

folio optimization [60], structural analysis [4], and optimal control [9]. In many applications

of quadratic programs, such as the classification of support vector machines [30], a good

estimate of the final solution may be known in advance.

Quadratic programming problems are important in their own right, but they also play

an important role in methods for nonlinear optimization. A survey by Gould and Toint [52]

lists over 1000 published and unpublished works on quadratic programming. Not included in

this list are the many hundreds of citations on sequential, successive, or recursive quadratic

programming methods for nonlinear programming, in which generally constrained optimiza-

tion problems are solved using a sequence of quadratic programming problems.

1.5 Overview

As larger and more challenging problems are considered, it becomes important to develop

efficient algorithms for solving these QP problems. In this thesis, we consider efficient

ways of solving quadratic programming problems in which the Hessian matrix H and linear

constraint matrix A are large and sparse. By incorporating third-party “black box” linear

system solvers, we are able to take advantage of the wealth of research and development

in sparse linear algebra. In addition, this allows us to develop a QP solver that is easily

adapted to parallel environments.

We give an overview of active-set methods for quadratic programming problems and

a survey of some active-set solvers in Chapter 2. This motivates the development of the

block-LU method described in Chapter 3, which is implemented using the inertia-controlling

algorithm of Chapter 4. In Chapter 5 we consider a method for recovering from singular

or ill-conditioned KKT systems. QPBLU, the Fortran 95 implementation of our active-set

block-LU solver, is introduced in Chapter 6. Chapter 7 provides results and comparisons

using different “black box” solvers within QPBLU and additional comparisons with the QP

solver SQOPT [36]. Finally, insights and additional issues arising from the development of

this block-LU method for quadratic programming are described in Chapter 8.



Chapter 2

Active-set methods

Active-set methods use an iterative process to find a solution of the QP problem. At

the current (non-optimal) point x, a search direction p and nonnegative step length α are

computed in order to define the next iterate x + αp. An initial feasibility phase is used

to find an initial point that satisfies the constraints in (1.1), and subsequent iterates are

constructed to remain feasible by using a suitable search direction and step length.

The active set of constraints is defined to be the set of all constraints whose bounds hold

with equality. For a problem in standard form (1.1), the active set contains the general linear

constraints plus the set of variables that are temporarily fixed at their current value (usually

on one of their bounds). The remaining variables are free to move. At each iteration, the

quadratic programming algorithm defines a working set, which is a list of the constraints

that are predicted to be active at the solution. The working set is a subset of the active

constraints.

2.1 Properties of the standard form

Let the subscript “FR” denote the indices of the columns of A that are not in the working

set (the “free” variables), and let the subscript “FX” denote the indices of the columns of A

that are in the working set (the variables that are “fixed” at their current value). Let nFR

denote the number of free variables, so that the matrix AFR denotes the m×nFR submatrix

of A whose columns correspond to the free variables. Similarly, let nFX denote the number

of fixed variables.

For a problem in standard form (1.1), the working-set matrix is composed of the matrix

4



CHAPTER 2. ACTIVE-SET METHODS 5

A and rows of the identity corresponding to variables currently fixed at their current value.

Given a permutation P such that AP =
(
AFR AFX

)
, the working-set matrix W can be

divided into its “free” and “fixed” components

WP =

(
AFR AFX

0 IFX

)
,

where IFX is the identity matrix with nFX columns and whose rows correspond to the fixed

variables.

Since the equality constraints Ax = b will always be in the working-set matrix, working

set changes correspond to adding or deleting rows of the identity from the working-set

matrix.

2.2 Background

In a generic active-set method, if W is the working set for the current point x, the search

direction p is obtained at each iteration by solving the equality constrained problem (EQP)

minimize
p∈Rn

gTp + 1
2pTHp

subject to Wp = 0, (2.1)

where g = c + Hx. The constraints Wp = 0 ensure that the constraints in the working set

remain active after x + αp for any α. The first-order necessary conditions for a point x to

be a solution of (2.1) state that there is a vector of Lagrange multipliers λ such that x and

λ satisfy the KKT system (
H W T

W 0

)(
p

−λ

)
= −

(
g

0

)
. (2.2)

If p = 0 is the solution to (2.1), then λ may be used to determine if the objective may

be decreased by removing a row from Wp = 0. In the standard form, this means removing

a variable from the set of fixed variables and allowing the variable to move from its current

value.

If p 6= 0, then the objective function may be decreased by taking a step along p. We

compute the largest possible step α, 0 ≤ α ≤ 1, that does not violate any bounds. If



CHAPTER 2. ACTIVE-SET METHODS 6

α < 1 then a new constraint becomes active, and the index of this constraint is added

to the working set. If α = 1, then x + p solves the EQP. Optimality for the original QP

problem may be checked using the Lagrange multipliers λ. If there is a multiplier with

the “wrong” sign, then the corresponding constraint may be removed from the working set.

Steps of length zero (degenerate steps) are possible when a constraint is active but not in

the working set.

The working set at the next iteration differs from that of the current iteration by a

single index. Unlike linear programming, neither the iterates nor the solution of the QP

need be at vertices.

Active-set methods for quadratic programming can typically be classified as full-space,

range-space, or null-space methods, depending on the manner in which the search direction

is computed from the KKT system (2.2). In addition, these methods may be applied to

either the primal (1.1) or dual (1.6) formulation of the QP problem and may employ either

direct or iterative methods to solve the required linear systems.

Full-space methods work directly with the KKT matrix

K =

(
H W T

W 0

)

using, for instance, a triangular factorization. Since the KKT matrix is indefinite, the

Cholesky factorization in general cannot be used. While Gaussian elimination with partial

pivoting could be used, this approach does not take advantage of the symmetry of the

system. A symmetric indefinite factorization of the form K = LDLT is an efficient strategy.

Iterative methods for general linear systems or for symmetric indefinite systems are an

alternative to approaches using a direct factorization, though they are not often used in

active-set methods.

For a problem in standard form, the search direction can be computed from the smaller

linear system (
HFR AFR

AFR

)(
pFR

−λ

)
= −

(
gFR

0

)
,

where HFR is the nFR×nFR submatrix of H corresponding to the free variables. The search

direction is equal to zero for variables that are fixed. That is, pFX = 0.

Range-space methods require H to be nonsingular in order to compute p by eliminating



CHAPTER 2. ACTIVE-SET METHODS 7

the first block of (2.2):

WH−1W Tλ = WH−1g

Hp = W Tλ− g.

This approach requires solves with H and forming and factorizing the matrix WH−1W T.

Range-space methods can be used when H is positive definite, well-conditioned, and easy

to invert (diagonal or block-diagonal, for example), when H−1 is known explicitly, or when

the number of equality constraints is small, so that WH−1W T is inexpensive to compute.

Null-space methods utilize an n × (nFR −m) matrix Z that forms a basis for the null

space of W . Like the range-space method, it uses the block structure of the KKT system to

decouple (2.2) into two smaller systems. The search direction p is obtained from the system

ZTHZ = −ZTg.

The matrix ZTHZ is known as the reduced Hessian for the current working set, and ZTg

is the corresponding reduced gradient. For large, sparse problems the columns of AFR may

be partitioned as

AFR =
(
B S

)
,

where B is an m ×m nonsingular basis matrix and S is the m × (nFR −m) matrix of the

superbasic columns of A. The value nS = nFR −m is known as the number of degrees of

freedom. When AFR has this form, a basis for the null space of AFR may be defined by the

columns of the matrix ZFR, where

ZFR =

(
−B−1S

I

)
, Z =

(
ZFR

0

)

and

ZTHZ = ZT
FRHFRZFR,

where HFR is the nFR × nFR submatrix of H corresponding to the free variables. Note that

the reduced Hessian and reduced gradient can be formed (using solves with B and BT )

without ZFR being formed explicitly.



CHAPTER 2. ACTIVE-SET METHODS 8

2.3 Properties of active-set methods

In some applications, a good estimate of the solution or the optimal active set will be

available in advance. It is desirable, especially when solving a sequence of related problems,

to be able to exploit this estimate of the final active set. Such “warm starts” can greatly

reduce the computational effort required to find a solution.

At each iteration active-set methods maintain a prediction of the set of constraints

that are active at the solution, and warm starts can be incorporated naturally. This is

not the case with interior-point methods, although some advances in this area have been

made [44, 74, 10]. Active-set methods have an advantage over interior-point methods in

easily permitting such warm starts.

For this reason, active-set methods are generally the method of choice in such appli-

cations as model predictive control and in the solution of subproblems arising as part of

sequential quadratic programming (SQP) algorithms. Problems in model predictive control

are not usually encountered in isolation, but rather as a sequence of related problems. The

data vary only slightly from one problem to the next. A good guess can be made for the

initial starting values or for the set of active constraints by using the solution to the previ-

ous problem. SQP methods solve a sequence of related problems whose optimal active sets

may be nearly identical. As the major iterations of an SQP converge, the QP subproblems

require fewer changes to the current working set.

Warm start capabilities are particularly important with active-set methods, since the

choice of an initial active set will influence the number of iterations needed to reach an

optimal point. In a typical active-set method, at most one constraint is added to or deleted

from the working set at each iteration. Even when there is more than one blocking constraint,

only one constraint is added to the working set. Likewise, at most one constraint is deleted

at each iteration. This places a natural lower bound on the number of iterations required

to reach an optimal point. For example, if an initial set of ` active constraints is inactive at

the solution, then at least ` iterations are needed to reach the solution. More iterations are

required if a constraint is added to the working set at one iteration but is later removed.

This lower bound is unlike the situation for interior point methods, in which the number

of iterations required typically scales very moderately with the number of variables. Interior-

point methods typically require fewer, though more expensive, steps to reach an optimal

point, while active-set methods generally require many more relatively inexpensive steps.



CHAPTER 2. ACTIVE-SET METHODS 9

Name Method Large-scale QP type Authors
QPA Primal, null-space Yes General N. I. M. Gould, D. Orban,

Ph. L. Toint
QPKWIK Dual No Strictly

convex
C. Schmid, L. T. Biegler

QPOPT Primal, null-space No General P. E. Gill, W. Murray, M.
A. Saunders

QPSchur Dual, full-space Yes Strictly
convex

R. Bartlett, L. Biegler

SQOPT Primal, null-space Yes Convex P. E. Gill, W. Murray, M.
A. Saunders

Table 2.1: A summary of some existing active-set QP solvers.

2.4 Some existing solvers

This section presents a survey of available active-set QP solvers. A summary of the solvers

discussed in the following sections is provided in Table 2.1.

2.4.1 QPA

QPA is part of GALAHAD [49], a library of Fortran 90 packages for nonlinear optimization.

It is primarily used within GALAHAD to solve quadratic programs in which a good estimate

of the final active set is known and relatively few iterations are needed. This method uses

a null-space approach based on a projected preconditioned conjugate gradient method to

compute the search direction at each iteration. Preconditioning of the conjugate-gradient

method requires solutions of systems of the form(
M (k) W (k)T

W (k) 0

)(
p

u

)
=

(
g

0

)
, (2.3)

where M (k) is an approximation to the Hessian and W (k) is the current working-set matrix.

Rather than refactorizing this matrix at every iteration, this method factorizes an initial

matrix

K0 =

(
M (l) W (l)T

W (l) 0

)



CHAPTER 2. ACTIVE-SET METHODS 10

is factorized at a given iteration l. Solutions to (2.3) at subsequent iterations use this

factorization of K0 and a factors of a certain small matrix.

2.4.2 QPKWIK

QPKWIK [70] is a convex quadratic programming solver based on the dual-space algorithm

of Goldfarb and Idnani [42]. A feature of this method is that it requires only the inverse

Cholesky factor of the positive definite Hessian matrix to be supplied. Since it does not

use a sparse Cholesky, this solver is not suitable for large-scale problems. QPKWIK is

used primarily to solve the highly structured convex quadratic programming problems that

arise in nonlinear model predictive control. It was used as the engine for local steady-state

optimization within the Aspen Technology’s Aspen Target product [3] for model predictive

control.

2.4.3 QPOPT

QPOPT [34] is an active-set method for general quadratic programming based on an inertia

controlling method [41]. It uses a null-space approach and maintains a dense LQ factoriza-

tion of the working-set matrix and a dense Cholesky factorization of the reduced Hessian.

Because all matrices are treated as dense, this solver is not intended for sparse problems,

although there is no fixed limit on the problem size. The method is most efficient when

there are many constraints or bounds active at the solution or when applied to a sequence

of related problems such as in SQP methods.

2.4.4 QPSchur

QPSchur [7] is an active-set, dual-feasible Schur-complement method for strictly convex

quadratic programming problems. The method, based on the dual algorithm of Goldfarb

and Idnani [42], computes a sequence of primal and dual vectors satisfying the KKT condi-

tions except for primal feasibility. A disadvantage of the dual-space algorithm is that the

Hessian matrix is required to be positive definite, so the method as a whole lacks generality.

Like other active-set methods, QPSchur can also take advantage of a good initial estimate

of the working set at a solution. However, since the initial guess of the optimal working set

may not be dual feasible, additional procedures must be used to adjust the initial working

set when implementing warm starts. QPSchur can exploit structured Hessian and constraint



CHAPTER 2. ACTIVE-SET METHODS 11

matrices (by calling specialized BLAS and LAPACK routines), making it suitable for large,

sparse and structured systems.

2.4.5 SQOPT

SQOPT [36] is a package for solving convex quadratic programming problems. It uses a

null-space method related to that used in the QPOPT package, except that Z is generated

from a sparse basis factorization of the form (2.3). SQOPT maintains a dense Cholesky

factorization of the reduced Hessian when the number of superbasic variables nS ≤ 2000

and uses a conjugate-gradient method when nS > 2000. It is designed to solve large linear

and quadratic problems in which the constraint matrices are sparse. Like QPOPT, SQOPT

is most efficient on problems in which the solution has few degrees of freedom compared to

the total number of variables. It is used as part of the SNOPT [35] package for large-scale

nonlinearly constrained optimization.

2.4.6 Comparisons to other methods

While active-set methods may not be the method of choice for solving general quadratic pro-

grams, there are many situations in which an active-set method is to be preferred, especially

when using warm starts.

A comparison between QPA and QPB [49], an interior-point trust-region method for

quadratic programming, was performed by Gould and Toint [53] using the CUTE [15] QP

test set. It was found that the two methods were comparable for modest-sized problems

when started from random points. QPA required many more iterations than QPB as the

problem dimensions increased. When a good estimate of the optimal active set was used

to initialize the solvers, it was found that QPA generally outperformed QPB, except for

problems that were degenerate, nearly degenerate, or ill-conditioned.

A comparison of active-set and interior-point methods for problems in Nonlinear Model

Predictive Control (NMPC) was made by Bartlett et al. [8]. In this study, the active-

set QP solvers QPSchur, QPOPT, QPKWIK, and an interior-point method using a Mehrotra

predictor-corrector strategy were applied to a problem in NMPC as part of an SQP method.

It was found that although the active-set solvers generally required more iterations

than the interior-point method as the problem sized increased, CPU times of the active-set

methods were competitive with the interior-point method.



Chapter 3

A block-LU method

3.1 Motivation

As we have seen, many excellent active-set quadratic programming solvers are available.

However, no solver or approach is ideal for all problems.

Methods applied to the dual formulation of the quadratic programing problem can

only be used when the Hessian matrix is positive semidefinite. Range-space methods for

quadratic programming are also limited to certain classes of problems. While the null-space

method has a wider range of applicability than the range-space method, it may become

inefficient when the number of degrees of freedom is large. A problem will have few degrees

of freedom if, for instance, the number of active constraints is nearly as large as the number

of variables. For problems with many degrees of freedom, the reduced Hessian ZTHZ can

be expensive to form.

No matter what type of method is used, the solution of linear systems of equations

forms the foundation of any method to solve quadratic programming problems. Care must

be taken to ensure that these systems are solved efficiently. For instance, a drawback of the

current implementation of QPSchur is in the handling of the Schur complement matrix. De-

pending on the inertia of the Schur complement matrix, this method uses either a Cholesky

or Bunch-Kaufman [43] factorization of the Schur complement. A Cholesky factorization

is updated when the Schur complement matrix is positive or negative definite, but if the

matrix is found to be indefinite, a Bunch-Kaufman factorization is recomputed from scratch

for every change to the Schur complement.

Linear algebraic computations comprise a substantial amount of the time spent solving

12



CHAPTER 3. A BLOCK-LU METHOD 13

quadratic programs, even for problems of moderate size. The dominant cost per iteration in

an active-set method is in the solution of the current KKT system, each of which is a rank-

one modification of its predecessor. It is vital that QP methods be able to take advantage

of advances in linear system solvers and of the structure and sparsity of the problem itself

in order to compute a solution efficiently.

The particular concern of this thesis is in the use of active-set methods to find the

solution of medium- to large-scale QP problems in which the linear constraint matrix is

sparse and many degrees of freedom are expected at the solution. The block-LU method is

presented as a technique that allows a variety of sparse linear system solvers to be utilized

effectively on the sequence of systems that arise as the working set changes.

3.2 Background on the block-LU method

The block-LU method is a variation of the Schur-complement method, which was introduced

for linear programming by Bisschop and Meeraus [14] and subsequently studied for quadratic

programming by Gill et al. [40] and Betts and Frank [12]. The block-LU update was

first discussed for linear programming in Gill et al. [37] and a variant of this method was

also proposed by Wright [72] for quadratic programming. A block-LU method for linear

programming has been implemented by Eldersveld and Saunders [29], which demonstrates

not only the practicality of such a method but also its potential to take advantage of machine

architecture and advances in linear algebra. Both the Schur-complement and block-LU

methods are full-space methods that work directly with a factorization of an initial KKT

matrix and take advantage of the fact that the working set changes by at most a single

constraint at any iteration.

For a quadratic programming problem in standard form, an initial KKT system can be

written as

K0

(
pFR

−λ

)
= −

(
gFR

0

)
, K0 =

(
H0 AT

0

A0 0

)
. (3.1)

The KKT matrix K0 at the next iteration differs from the previous by the addition or

deletion of only one row and column. After a sequence of iterations the solution of the



CHAPTER 3. A BLOCK-LU METHOD 14

current KKT system may be found by way of an augmented system of the form(
K0 V

V T D

)(
y

z

)
=

(
f

w

)
, (3.2)

where the matrices V and D arise from changes in the working set due fixing initially free

variables or freeing initially fixed variables.

In the Schur-complement method, the solution to the current KKT system is obtained

using the factors of the initial KKT matrix K0 and a dense Schur complement matrix

C = D − V TK−1
0 V . The following equations are solved in turn to obtain y, z:

K0t = f

Cz = w − V Tt

K0y = f − V z.

Using this method, the work to compute the search direction in one QP iteration is domi-

nated by two solves with K0 and one solve with C. Solves with K0 may be handled using

an initial factorization K0 = L0U0.

The block-LU method maintains a block factorization of the augmented matrix in (3.2):(
K0 V

V T D

)
=

(
L0

ZT I

)(
U0 Y

C

)
.

The block factors L0, U0, C, Y , and Z are defined by

K0 = L0U0

L0Y = V

UT
0 Z = V

C = D − ZT Y

= D − V TK−1
0 V,

where the matrix C is the Schur complement of K0 in the augmented matrix. The solution



CHAPTER 3. A BLOCK-LU METHOD 15

to system (3.2) may then by found by solving

L0t = f

Cz = w − ZT t

U0y = t− Y z.

This method requires only one solve with K0 and one with C at each iteration in order to

compute the search direction and λ.

3.3 Comparisons to the Schur-complement method

The block-LU method shares many of the same properties of the Schur-complement method.

Both methods make use of an initial KKT matrix K0 and the Schur complement of K0 in

an augmented system to represent the current KKT matrix. The primary differences result

from storing the block factors of the augmented matrix.

In either method, the initial KKT matrix K0 may be treated as a “black box” and

factorized by any available method. This factorization is then used repeatedly to solve the

current KKT system. After a maximum number of iterations, the current KKT matrix is

formed, factorized, and is used as the next initial KKT matrix. Refactorization is generally

used to limit the storage required for large-scale problems and also provides an opportunity

to recompute an accurate solution after an accumulation of rounding errors. The elements

of K0 need not be stored or accessed once the factorization has been completed, unless

iterative refinement is desired.

The dimensions of the Schur complement matrix C will not be larger and could be

less than the refactorization frequency of K0. Since the refactorization frequency will be

relatively small for large-scale problems, it is efficient to treat C as a dense matrix in both

methods. The matrix C itself is usually not formed and updated explicitly. Instead, QR or

LU factors of C are updated for each change to the working set. Additional solves with K0

may be necessary to update C. Provided that K0 is reasonably well-conditioned, updates

to the block factorization and Schur complement are stable. The Schur complement matrix

C will tend to reflect the condition of the current KKT matrix. Ill-conditioning of C need

not persist, however, since rows and columns of C may be deleted or added as the working

set changes.



CHAPTER 3. A BLOCK-LU METHOD 16

While more storage is required for the block-LU method than for the Schur-complement

method, computing time may be saved by storing the block factors Y and Z rather than

performing an additional solve with K0. The block-LU method implemented by Eldersveld

and Saunders [29] was used to update the basis matrix B0 in a simplex method for linear

programming problems. Their original intent was to investigate the performance of the

Schur-complement method to update B0. However, the Schur-complement method was

found to be excessively expensive when compared to the Bartels-Golub update [6], due

to the additional solves with B0 and BT
0 required by the Schur-complement method. The

block-LU method was (successfully) implemented as an alternative to the Schur-complement

method, trading additional workspace for less computation time. This implementation was

additionally able to take advantage of the vector hardware of a Cray-MP in the storage and

handling of the block factors.

3.4 The augmented KKT matrix

The manner in which the block factorization of the current KKT matrix is updated depends

on whether the column is entering or leaving the working set and whether that column

formed part of the initial KKT matrix

K0 =

(
H0 AT

0

A0 0

)
,

where H0 is the n0×n0 initial Hessian matrix, A0 is the m×n0 matrix whose columns form

the initial basis, and n0 is the initial number of free variables. Changes to the working set

result in an augmented KKT system of the form (3.2). At each iteration, this system must

be updated to reflect the changes in the working set. These changes can be represented by

bordering the initial KKT matrix by a row and column.

3.4.1 An example

There are four possible ways that a column of A may enter or leave the working set. To

illustrate how to augment the initial KKT matrix as the working set changes, we consider an

example with four variables and a single general constraint. Variables 1 and 3 are initially

free to move and variables 2 and 4 are fixed on their bounds. The initial KKT system (3.1)

is



CHAPTER 3. A BLOCK-LU METHOD 17


h11 h13 a11

h13 h33 a13

a11 a13 0




p1

p3

−λ1

 =


g1

g3

0

 . (3.3)

Note that elements of the search direction p corresponding to the fixed variable are equal

to zero. That is, p2 = p4 = 0. Since H is symmetric, it is written in terms of its upper

triangular part.

Case 1. To free a variable r from its bound when r is not a member of the initial set of

free variables, the KKT system is bordered with the free elements of a row and column of

H and the rth column of A. Here, we take r = 2:
h11 h13 a11 h12

h13 h33 a13 h23

a11 a13 0 a12

h12 h23 a12 h22




p1

p3

−λ1

p2

 = −


g1

g3

0

g2

 .

Case 2. To fix a variable s at its current value when s is a member of the initial set of

free variables, the KKT system is bordered with a row and column of the identity. Here,

we take s = 3: 

h11 h13 a11 h12 0

h13 h33 a13 h23 1

a11 a13 0 a12 0

h12 h23 a12 h22 0

0 1 0 0 0





p1

p3

−λ1

p2

z1


= −



g1

g3

0

g2

0


.

This additional row has the effect of setting p3 = 0, adding s = 3 to the working set.

Case 3. To be able to fix a variable s on its bound when it is not a member of the

initial set of free variables, s must have been added to the set of free variables and the KKT

system updated as in Case 1. To fix this variable on its bound, the corresponding column



CHAPTER 3. A BLOCK-LU METHOD 18

of V and row and column of D are deleted from the augmented system:
h11 h13 a11 0

h13 h33 a13 1

a11 a13 0 0

0 1 0 0




p1

p3

−λ1

z1

 = −


g1

g3

0

0


Case 4. To be able to free a variable r from it bound when it was a member of the

initial set of free variables, r must have been fixed on a bound and the KKT system updated

as in Case 2. To free this variable from its bound, again the corresponding column of V

and row and column of D are deleted from the augmented system, resulting in the original

system (3.3).

The process described above can be repeated over a sequence of iterations to form the

augmented system (3.2). In a block-LU method, this augmented system will usually increase

in dimension by one for every change to the working set.

3.5 Updating the block factorization

Let K0 be a nonsingular matrix with LU factorization K0 = L0U0. Consider the following

block-LU factorization of the augmented matrix:(
K0 V

V T D

)
=

(
L0

ZT I

)(
U0 Y

C

)
.

The matrices C, Y , Z are updated as rows or columns of
(

V

D

)
are added or removed from

the augmented matrix. If a column
(

v

d

)
is appended, then C and Y are updated by setting

Y =
(
Y y

)
, where L0y = v

C =
(
C c

)
, where c = d− ZTy.



CHAPTER 3. A BLOCK-LU METHOD 19

If a row
(
vT dT

)
is appended, then C and Z are updated by setting

Z =
(
Z z

)
, where UT

0 z = v,

C =

(
C

cT

)
, where cT = dT− zTY.

If a column of
(

V

D

)
is deleted, then the corresponding columns of C and Y are deleted. If

a row of
(
V T D

)
is deleted, then the corresponding row of C and column of Z are deleted.

Instead of explicitly updating the matrix C or its inverse, we choose to update a factor-

ization of C.

3.5.1 Hessian updates

The block factorization method can also be used within an SQP method in which updates to

the Hessian matrix are of the form H1 = (I + vuT )H0(I +uvT ). When computed explicitly,

this update may cause the current Hessian matrix to be very dense. The block-LU method

can accommodate such changes to H while preserving sparsity in the current KKT system.

The solution to a system of the form(
H1 W T

W

)(
y1

y2

)
=

(
d1

d2

)
(3.4)

may be obtained by solving the augmented system
H0 W T ū v

W

ūT γ −1

vT −1




y1

y2

r

s

 =


d1

d2

0

0

 ,



CHAPTER 3. A BLOCK-LU METHOD 20

where ū = H0u and γ = uT H0u:

H0y1 + W Ty2 + rū + sv = d1

Wy1 = d2

ūTy1 + rγ − s = 0

v̄Ty1 − r = 0.

Eliminating the terms s = ūTy1 + rγ and r = v̄Ty1, we obtain

H0y1 + (vTy1)ū + (ūTy1)v + γ(vTy1)v + W Ty2 = d1 (3.5)

Wy1 = d2.

Expanding the updated Hessian

H1 = (I + vuT )H0(I + uvT )

= H0 + H0uvT + vuTH0 + vuTH0uvT

= H0 + ūvT + vūT + γvvT,

we find that (3.5) is equivalent to

H1y1 + W Ty2 = d1

Wy1 = d2

and therefore solves system (3.4).

By induction, after k low-rank updates to H0 of the form

Hk = (I + vku
T
k )Hk−1(I + ukv

T
k )

= (I + vku
T
k ) · · · (I + v1u

T
1 )H0(I + u1v

T
1 ) · · · (I + ukv

T
k ),

the KKT system for the current Hessian Hk+1(
Hk+1 W T

W

)(
y1

y2

)
=

(
d1

d2

)



CHAPTER 3. A BLOCK-LU METHOD 21

is equivalent to an augmented KKT system involving the initial Hessian H0:

H0 W T ū1 v̄1 · · · ūk v̄k

W

ūT
1 γ1 −1

vT
1 −1
...

. . .

ūT
k γk −1

vT
k −1





y1

y2

r1

s1

...

rk

sk


=



d1

d2

0

0
...

0

0


,

where ūi = Hi−1ui and γi = uT
i Hi−1ui for i = 1, . . . , k. This type of Hessian update may

also be interleaved with working set updates to form an augmented system involving the

initial H0.

3.6 Sparsity of Y and Z

The accumulation of nonzeros elements in the block factors Y and Z depends on many

things, such as the sparsity of the columns that form V , the sparsity of the initial matrix

K0, and the details of the factorization used to form K0 = L0U0. A simple and effective,

though not always readily available, technique for maintaining sparsity in both Y and Z

is to utilize separate solves with the matrix factors L0 and U0. Whenever possible, it is

important to be able to treat L0 and U0 as two “black boxes” for solving linear systems.

Doing so helps to maintain the highest degree of sparsity in both Y and Z, reducing the

computation time for operations involving these matrices and preventing the premature

refactorization of K0 due to insufficient storage for the nonzero elements of Y or Z.

For solvers in which separate solves are available, Y and Z may be computed as

L0Y = V, UT
0 Z = V,

where the columns of V augment K0. For symmetric factorizations of the form K0 =

L0D0L
T
0 we can define U0 = D0L

T
0. Using separate solves with L0 and U0, we may expect

approximately the same degree of sparsity in both Y and Z. For solvers in which separate

solves are not available, we must take “L0” = I and “U0” = L0U0. That is, Y and Z are



CHAPTER 3. A BLOCK-LU METHOD 22

defined by

Y = V, UT
0 LT

0 Z = V.

Since V is expected to be sparse, this method of updating Y and Z preserves the sparsity

of Y at the expense of that of Z.



Chapter 4

QP algorithm

The algorithm for the quadratic program solver is based on the inertia-controlling method

of Gill et al. [41]. This is a primal-feasible method that does not require that the objective

function be strictly convex. Inertia-controlling methods are a class of algorithms for indefi-

nite QP that never allow the reduced Hessian to have more than one nonpositive eigenvalue.

In this section we introduce the inertia-controlling algorithm and present results from [41].

Proofs of the lemmas stated in this chapter may be found in [41] and [33].

4.1 The inertia-controlling method

The inertia-controlling method in [41] was derived for general quadratic programming prob-

lems of the form

minimize
x∈Rn

cTx + 1
2xTHx

subject to Ax ≥ b.

The results of this section pertain to this form of the problem, with the assumption that H

is positive semidefinite.

The working-set matrix W for this form of the QP typically consists of the rows of A

that are active. Given W of full row rank, we say that a point x such that g(x) = W Tλ for

some vector λ is a subspace stationary point (with respect to W ). Given a null-space basis

Z for W , a subspace stationary point such that ZTHZ is positive definite is said to be a

subspace minimizer (with respect to W ).

23



CHAPTER 4. QP ALGORITHM 24

The vector x is said to be a non-optimal subspace minimizer with respect to the working-

set matrix W if there exists an index s in the working set such that

g = W Tλ and λs < 0.

Since λs < 0, it is possible to find a search direction p that reduces the value of the

objective while retaining feasibility. One possibility for p is the solution to the equality

constrained problem (2.1). In the strictly convex case, H is positive definite and the KKT

system associated with the EQP is nonsingular. In the general convex case, the reduced

Hessian ZTHZ (and therefore the KKT system) may be singular.

Inertia-controlling methods choose the working set in order to control the inertia of the

reduced Hessian. In particular, the reduced Hessian is never permitted to have more than

one zero eigenvalue. At any initial iterate x0, it is possible to find enough real or temporary

constraints to define a working-set matrix W0 such that ZT
0HZ0 is nonsingular. The reduced

Hessian can only become singular when a constraint is deleted from the working set. When

the reduced Hessian is singular at a non-optimal point, it is used to define a search direction

p such that

ZTHZpZ = 0 and gTZpZ < 0. (4.1)

The vector p = ZpZ is said to be a direction of descent. A step in such a direction normally

reaches a new constraint r (if the objective is bounded below within the feasible region).

Constraint r is then added to the working set. Inertia-controlling methods differ from

regular active-set methods in that no constraints are deleted from the working set until the

reduced Hessian becomes nonsingular.

Lemma 4.1.1. Let W+ be a matrix of full row rank. Let W denote W+ with its sth row

omitted, and note that W also has full row rank. Let the matrices Z+ and Z denote the

null-space bases for W+ and W , and let ZT
+HZ+ and ZTHZ be the corresponding reduced

Hessians. Assume that ZT
+HZ+ is positive definite and that x is a subspace minimizer such

that g = W T
+λ and λs < 0. Consider the linear system

(
H W T

+

W+ 0

)(
u

µ

)
=

(
0

es

)
. (4.2)

Let µs denote the sth component of µ. The following properties hold:



CHAPTER 4. QP ALGORITHM 25

1. If µs < 0, then ZTHZ is positive definite.

2. If µs = 0, then ZTHZ is singular.

3. If ZTHZ is positive definite, then x + p with p = (λs/µs)u minimizes the equality

constrained QP (2.1) with constraint matrix W .

4. If ZTHZ is singular, then p = u satisfies both the descent condition gTp < 0 and

pTHp = 0, in addition to maintaining feasibility of the constraints.

The goal of this approach is to compute the search direction p using a system of the

form (
H W T

+

W+ 0

)
, (4.3)

that is guaranteed to be nonsingular regardless of whether the reduced Hessian ZTHZ is

positive definite or not.

Lemma 4.1.1 depends on x being a subspace minimizer with respect to W+. This is the

case when a full-length step α = 1 has just been taken, but it does not necessarily hold

when α < 1. This difficulty is remedied by retaining the index s of the most recently deleted

constraint in the working set, even though this constraint may be inactive at the current

point.

In this chapter we use the following notation. For a working set that includes the index

s of the most recently deleted constraint, the corresponding working-set matrix is denoted

by

W+ =

(
W

aT
s

)
, (4.4)

where W is formed from a subset of the active constraints. The subscript “+” indicates a

quantity corresponing to a working set in which the most recently deleted constraint has

been retained. A bar over a quantity indicates its value at the next iteration. For example,

x̄ = x + αp is the resulting iterate after a step along p has been taken. If a constraint

has been added to the working set, and the working set does not include the most recently

deleted constraint, then the working-set matrix at the next iteration is

W̄ =

(
W

aT
r

)
.



CHAPTER 4. QP ALGORITHM 26

If constraint r has been added to a working set that retains the most recently deleted

constraint s, then the working-set matrix at the next iteration is

W̄+ =

(
W̄

aT
s

)
=


W

aT
r

aT
s

 .

Consider a non-optimal subspace minimizer x for W+ at which all the constraints in W

are active. It follows that

g = W T λE + λsas, with λs < 0, (4.5)

where λE is the subset of λ corresponding to W . The following lemma shows that x + αp

is a subspace minimizer with respect to a set of shifted constraints with working-set matrix

W+.

Lemma 4.1.2. Let g and W+ be the gradient and working set at a non-optimal subspace

minimizer x. Assume that W+ can be written as in (4.4), with as satisfying (4.5). Let

x̄ = x + αp, where p has been defined as in Lemma 4.1.1. Assume that the constraint r is

to be added to W+ at x̄ to give W̄+. Then

1. ḡ, the gradient at x̄, is a linear combination of W T and as.

2. There exists a vector λ̄E and scalar λ̄s such that

ḡ = W̄ T λ̄E + λ̄sas with λ̄s < 0. (4.6)

This lemma implies that x̄ can be regarded as the solution of a problem in which the

most recently deleted constraint is shifted to pass through the point x̄. In a sequence of

consecutive steps at which a constraint is added to the working set, each iterate is a subspace

minimizer of an appropriately shifted problem. That is, x̄ solves the equality constrained

problem

minimize
x∈Rn

cTx + 1
2xTHx

subject to Wx = bW , aT
sx = aT

sx̄. (4.7)



CHAPTER 4. QP ALGORITHM 27

The optimal multipliers for this problem are λ̄E and λ̄s of Lemma 4.1.2. If the step α = 1

is taken to reach the point x̄, then this multiplier becomes zero. Therefore, x̄ is a subspace

minimizer with respect to W and W+.

By induction, in a sequence of consecutive steps at which a constraint is added to the

working set, each iterate is a subspace minimizer of an appropriately shifted problem. We

call a point x an intermediate iterate if it is not a subspace stationary point with respect to

W . These intermediate iterates occur after a constraint is deleted at a subspace minimizer

but before the next subspace minimizer is reached, and each iterate is associated with the

most recently deleted constraint s. The reduced Hessian at each of these iterates is positive

definite, because adding a constraint in an inertia-controlling method cannot produce a

stationary point where the reduced Hessian is not positive definite. If a constraint is added,

then it must hold that α < 1. The sequence of intermediate iterates ends when a step

α = 1 is taken, and a new sequence of intermediate iterates begins. Note that the maximum

number of consecutive intermediate iterates is n, the number of steps from an unconstrained

point to a vertex minimizer.

Some useful results concerning a sequence of intermediate iterates are given below.

Lemma 4.1.3. In a sequence of intermediate iterates, g, λE , and λs satisfy (4.5) .

The following lemma ensures that adding a constraint in an inertia-controlling method

cannot produce a stationary point where the reduced Hessian is not positive definite.

Lemma 4.1.4. Let x be an iterate in a sequence of consecutive intermediate iterates. Let

x̄ = x + αp be the next iterate, where the step α < 1 has just been taken to reach the

constraint with normal ar, which is added to W to form W̄ . Then

1. If x̄ is a stationary point with respect to W̄ , then ar is linearly dependent on W+ and

the reduced Hessian Z̄THZ̄ is positive definite.

2. If aT
r is linearly dependent on W+, then x̄ is a minimizer with respect to W̄ .

4.2 Updating the required vectors

The inertia-controlling algorithm requires the solution of three types of KKT-based systems

in order to compute and update p and λ:



CHAPTER 4. QP ALGORITHM 28

System 0 (
H W T

0

W0 0

)(
p0

−λ0

)
= −

(
g0

0

)
(4.8)

System 1 (
H W T

+

W+ 0

)(
u

µ

)
=

(
0

es

)
(4.9)

System 2 (
H W T

+

W+ 0

)(
z

η

)
=

(
ar

0

)
, (4.10)

where H is the n×n Hessian matrix, W0 is the initial working-set matrix, g0 is the gradient

at the initial point, es is the sth row of the m ×m identity matrix, W+ is the working-set

matrix (and includes the normal of the most recently deleted constraint), and ar is the

normal of the constraint to be added.

System 0 is solved only once at the initial point x0. System 1 is solved at a subspace

minimizer in order to compute the vectors u and µ that are used to obtain p and λ. System 2

is solved when a variable r is added to the working set. The vectors z and η are used to

update u, µ, and λ to reflect the addition of a new row to the working-set matrix.

This section describes how u, µ, and λ are updated when r is added to the working set

or s is deleted.

Lemma 4.2.1. (Move to a new iterate) Suppose that x, p, u, µ are the current vectors

of the inertia-controlling method. Let x̄ = x + αp, where p has been defined according to

Lemma 4.1.1. The solution λ̄+ =
(

λE

λs

)
of

W̄ T
+λ̄+ = ḡ = g(x̄) = g + αHp

is

λ̄E = λE − α(aT
sp)µE , (4.11)

where

λ̄s =

{
(1− α)λs if µs < 0

λs − αµs if µs = 0.
(4.12)



CHAPTER 4. QP ALGORITHM 29

Lemma 4.2.2. (Constraint addition, independent case) Let x, u, z, η be the current vectors

of the inertia-controlling method. Assume that the constraint ar is to be added to the working

set at x, where W and ar are linearly independent. Let ρ = aT
ru/aT

rz. Then the vectors ū

and µ̄ defined by

ū = u− ρz, µ̄ =

(
µ− ρη

ρ

)
(4.13)

satisfy (
H W̄ T

+

W̄+ 0

)(
ū

µ̄

)
=

(
0

es

)
, (4.14)

where W̄+ is the working-set matrix that includes the new constraint ar and the most recently

deleted constraint as. That is, ū and µ̄ satisfy System 1 (4.9) for W̄+.

If ZTHZ is positive definite and the working set contains the most recently deleted

constraint s, then s can be deleted from the working set. The following lemma can be

applied in two situations: when a constraint is deleted from the working set at a minimizer

and the reduced Hessian remains positive definite after the deletion, and at an intermediate

iterate after a constraint has been added that makes ZTHZ positive definite.

Lemma 4.2.3. (Constraint deletion) Suppose that x is an iterate of an inertia-controlling

method, the reduced Hessian at the current point ZTHZ is positive definite, and the working

set does not contain the most recently deleted constraint s. Then the vector λ̄ defined by

λ̄ = λE + ρµE , where ρ = −λs/µs, (4.15)

satisfies g = W̄ Tλ̄.

Note that u and µ are no longer needed to define the search direction after s has been

removed from the working set.

The last possibility occurs when the constraint ar to be added to the working set is lin-

early dependent on W T. In this case, we have z = 0 in System 2 (4.10). From Lemma (4.1.4),

the point reached must be a minimizer with respect to the working set with constraint r,

and constraint s is no longer needed. The following lemma describes the updates that si-

multaneously remove s and add r to the working set. After an application of these updates,

the algorithm either terminates or deletes a constraint (that cannot be ar).



CHAPTER 4. QP ALGORITHM 30

Lemma 4.2.4. (Constraint addition, dependent case) Suppose that x is an intermediate

iterate. Assume that the constraint ar to be added to the working set at x is linearly de-

pendent on W , and let W̄ be the working-set matrix with the additional row ar. Define

ω = λs/ηs. The vector λ̄ =
(

λ̄E

λ̄r

)
with

λ̄E = λE − ωηE and λ̄r = ω (4.16)

satisfies W̄ T λ̄ = g.

The QP algorithm derived from the inertia-controlling method is given in Algorithm 1.

4.3 Linear systems for the standard form

In this section we derive the necessary linear systems (4.8)–(4.10) for a problem in stan-

dard form (1.1). Recall that because the working-set matrix will always include the linear

constraints Ax = b, we can find a permutation P such that the working-set matrix can be

written

WP =

(
AFR AFX

0 IFX

)
.

Without loss of generality, we assume throughout this section that the permutation P = I.

The subscript “E” corresponds to the general constraints Ax = b, and the subscript “B”

corresponds to the active bounds in l ≤ x ≤ u. The index r is to be added to the working

set, and the index s is to be removed.

For the standard form (1.1) we can solve Systems 0, 1, and 2 in terms of the initial

reduced KKT matrix (
HFR AFR

AFR

)
.

System 0 can be written as
HFR HRX AT

FR 0

HT
RX HFX AT

FX IFX

AFR AFX 0 0

0 IFX 0 0




pFR

pFX

−λE

−λB

 = −


gFR

gFX

0

0

 ,

where HRX is the matrix of mixed off-diagonal terms of the Hessian, λE are the Lagrange



CHAPTER 4. QP ALGORITHM 31

Algorithm 1 Convex QP algorithm
Solve System 0 for p0 and λ0

x← x0 + p0, λ← λ0

subspace minimizer ← true
loop

if subspace minimizer then
λs ← min(λ)
if optimal then STOP end if
Solve System 1 for u and µ
singular H ← (µs = 0)

end if
p← if singular H then u else (λs/µs)u end if
Compute step length α
if α =∞ then unbounded, STOP end if
x← x + αp
λ← if singular H then λ− αµ else λ− α(λs/µs)µ
if hit constraint r then

Solve System 2 for z and η
if z = 0 then

ω ← λs/ηs, λ← λ− ωη, λs ← ω
else

Add r to the working set
ρ← ur/zr, u← u− ρz, µ← µ− ρη, µs ← ρ

end if
else

Remove variable s from the working set
end if

end loop



CHAPTER 4. QP ALGORITHM 32

multipliers corresponding to the equality constraints and λB are the reduced gradients for

the fixed variables (the Lagrange multipliers corresponding to the active bounds). This

system reduces to (
HFR AT

FR

AFR 0

)(
pFR

−λE

)
= −

(
gFR

0

)
pFX = 0

λB = gFX + HT
RXpFR −AT

FXλE .

System 1 can be written

HFR HRX (hs)FR AT
FR 0 0

HT
RX HFX (hs)FX AT

FR IFX 0

(hs)T
FR (hs)FX hss aT

s 0 1

AFR AFX as 0 0 0

0 IFX 0 0 0 0

0 0 1 0 0 0





uFR

uFX

us

µE

µB

µs


=



0

0

0

0

0

δ


,

where

δ =

{
1 if x moves off its lower bound

−1 if x moves off its upper bound.
(4.17)

System 1 reduces to(
HFR AT

FR

AFR 0

)(
uFR

µE

)
= −

(
(hs)FR

as

)
(

uFX

us

)
=

(
0

δ

)
(

µB

µs

)
= −

(
HT

RX

(hs)T
FX

)
uFR −

(
(hs)FX

hss

)
−

(
AT

FX

aT
s

)
µE .



CHAPTER 4. QP ALGORITHM 33

System 2 can be written

HFR HRX (hs)FR AT
FR 0 0

HT
RX HFX (hs)FX AT

FX IFX 0

(hs)T
FR (hs)FX hss aT

s 0 1

AFR AFX as 0 0 0

0 IFX 0 0 0 0

0 0 1 0 0 0





zFR

zFX

zs

ηE

ηB

ηs


=



δer

0

0

0

0

0


,

where δ is defined in (4.17). This reduces to(
HFR AT

FR

AFR 0

)(
zFR

ηE

)
= −

(
δer

0

)
(

zFX

zs

)
=

(
0

0

)
(

ηB

ηs

)
= −

(
HT

RX

(hs)T
FR

)
zFR −

(
AT

FX

aT
s

)
ηE .

4.4 Finding an initial feasible point

The active-set method assumes a starting point that satisfies the linear constraints Ax = b,

and it maintains Ax = b throughout. A point x is said to be infeasible if the bounds

l ≤ x ≤ u are not satisfied to within some tolerance. The constant δ is defined to be the

feasibility tolerance with respect to the bound constraints. The constraint lj ≤ xj ≤ uj is

considered to be

satisfied if lj − δ ≤ xj ≤ uj + δ,

violated if xj ≤ lj − δ

or uj + δ ≤ xj .

One approach to obtaining feasibility with respect to the bound constraints is to use

a two-phase approach. The first phase (the feasibility phase) finds a feasible point by

minimizing the sum of the infeasibilities. The second phase (the QP phase) minimizes the

quadratic objective function in the feasible region.



CHAPTER 4. QP ALGORITHM 34

A single-phase approach can also be used, which simultaneously tries to minimize the

objective function while improving feasibility. In this procedure, a composite objective func-

tion is used, in which penalty terms are introduced into the original objective for variables

that violate their bounds:

φ(x, ρ) = cTx + 1
2xTHx + ω

n∑
j=1

max(lj − xj , 0) + ω

n∑
j=1

max(xj − uj , 0),

where the weight ω on the infeasibilities should be large enough to reduce the penalty term.

A strategy is used to determine whether a feasible point exists for the original problem, or

whether ω has become sufficiently large. The value of ω is increased by some factor if an

infeasible minimizer of the composite objective function is found and ω is not already at

some large limiting value.

4.5 Step length

The step length α is chosen such that the point x + αp reaches one of the bounds on x. If

x is currently infeasible, the number of infeasibilities is not permitted to increase. If the

number of infeasibilities remains the same, then the sum of the infeasibilities will decrease.

If the number of infeasibilities decreases, then the sum of the infeasibilities will usually also

decrease.

4.6 Anti-cycling

As long as the step length α is nonzero, progress is being made. Zero-length steps are

possible if the constraints are degenerate; that is, if there are constraints that are active

but not in the working set. Theoretically, a sequence of zero-length steps could continue

indefinitely.

The EXPAND [39] anti-cycling procedure is used, in which a working feasibility tolerance

is maintained and increases slightly and consistently over a sequence of iterations. When

free variables become fixed, they are permitted to violate their bounds slightly in order to

maintain Ax = b. Few (if any) such variables are expected to be infeasible at a final solution.

Infeasible fixed variables are reset on their bounds after a fixed number of iterations or at

a potential optimal point, and the EXPAND procedure restarts. This procedure has been



CHAPTER 4. QP ALGORITHM 35

used successfully within solvers such as MINOS [64] and SQOPT [36].

4.7 Optimality conditions

An optimality tolerance σ > 0 is used to determine whether x is a constrained stationary

point. For xj on its lower bound, the reduced gradient zj of the objective (1.3) is considered

optimal if zj ≤ σ. For xj on its upper bound, zj is optimal if zj ≥ −σ. If zj is non-optimal,

then the objective function can be reduced by removing xj from the working set.

If optimal multipliers occur when the sum of the infeasibilities is nonzero and the weight

on the infeasibilities ω has reached a maximum value, then the problem is declared to be

infeasible.



Chapter 5

Recovering from singular KKT

systems

“Basis repair” [35] is an important practical matter for implementations of the simplex

method and reduced-gradient method. The analogous concept for QPBLU is KKT Repair.

In both cases, although linear constraints Ax = b, ` ≤ x ≤ u tend to be written in that

form for convenience, in practice they are typically implemented in the more general form

Ax− s = 0, ` ≤

(
x

s

)
≤ u,

where s is a vector of slack variables whose bounds allow two-sided constraints b1 ≤ Ax ≤ b2

to be accommodated easily. An important benefit of including a full set of slacks is that

the resulting constraint matrix (A −I) has full row rank. Even if a slack variable si has

bounds `n+i = un+i = 0 (so that it could apparently be eliminated from the problem), the

unit vector associate with such a “variable” remains vital for both Basis Repair and KKT

Repair.

For convenience we revert to the form Ax = b, ` ≤ x ≤ u while bearing in mind that a

full set of unit vectors exists among the columns of “A”.

36



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 37

5.1 Basis repair and rank-revealing LU

The simplex method and the reduced-gradient method are two classic active-set methods

based on the null-space approach for linearly constrained optimization. They maintain

a nonsingular basis matrix B obtained from the columns of the constraint matrix A (re-

ally (A −I) as just explained). Implementations such as in CPLEX [56] MINOS [64], and

SQOPT [36] depend critically on the current B being reasonably well-conditioned relative

to the floating-point precision in use (typically 15 digits).

Sparse LU factors of B are needed to implement each simplex or reduced-gradient iter-

ation. Whenever the factors are computed directly (rather than updated), they are the key

tool for judging whether B is nearly singular, and for determining which columns (if any)

should be replaced by columns of −I to obtain a better-conditioned basis before iterations

proceed.

5.1.1 Threshold Partial Pivoting (TPP)

A conventional sparse LU factorization based on threshold partial pivoting (TPP) sometimes

gives warning of near-singularity. In LUSOL [38], MA48 [27], and SuperLU [21] it takes the

form

PBQ = LU, Ljj = 1, |Lij | ≤ τ, (5.1)

where P and Q are permutations chosen to promote sparsity in L and U while maintaining

a bound on the subdiagonals of L. The factor tolerance τ is a specified parameter in the

range 1 ≤ τ ≤ 10, say. It is chosen to balance sparsity and stability, with values nearer 1

giving improved stability. Except for pathological cases, this TPP strategy ensures that L

is reasonably well-conditioned. It follows that the other factor U must reflect the condition

of B. We believe that all sparse LU factorization packages should keep either L or U well-

conditioned, and the documentation should tell us which case it is. The other factor can

then be examined for signs of singularity, such as small diagonals and/or large off-diagonals.

For example, if

U =


2 1

1 11

10−10

3

,



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 38

it seems clear that rank(U) ≈ 3 and the third column of B should be replaced by the third

column of −I (assuming P = Q = I). If the “11” entry were 1011, say, the last column of

B would also need to be replaced.

On the other hand, for the example

B =


δ 1

δ 1 1

δ 1

δ

, δ = 10−10, P = Q = I, L = I, U = B,

the “small diagonals” heuristic would regard U as having four singularities (rank(U) ≈ 0!)

and replace all columns of B, when in fact rank(U) ≈ 3 and it would suffice to replace just

the first column of B, using the last column of −I.

5.1.2 Threshold Rook Pivoting (TRP)

To guard against the preceding situation, LUSOL incorporates a relatively recent option

known as threshold rook pivoting (TRP). Conceptually, the diagonals of U are factored out

and we regard the sparse LU factors as

PBQ = LDU, Ljj = Ujj = 1, |Lij | ≤ τ, |Uij | ≤ τ. (5.2)

Now, both L and U are likely to well-conditioned if τ is in the range 1 ≤ τ ≤ 10, say. It

follows that D should reflect the condition of B.

We see that the TRP strategy would not allow L = I, D = δI, DU = B in the above

example because the off-diagonal elements of such a U would be very large. Instead, the

first column of B will be interchanged with the last column (Q permutes columns 1 and 4),

P will be the identity, and the factors become

PBQ =


1 δ

δ 1 1

δ 1

δ

 = LDU, L =


1

δ 1

δ 1

δ 1

, DU =


1 δ

1 −δ −δ2

1 δ3

−δ4

.

Even for δ as large as 10−3, LUSOL will correctly identify rank(U) ≈ 3. This ability has

significantly improved the performance of SNOPT problems; see [35]. Experience suggests



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 39

that TRP requires 1 ≤ τ ≤ 4 and sometimes τ ≤ 2 to achieve reliable rank-revealing

properties. The resulting LU factors are generally more dense and expensive to compute

than with the conventional TPP strategy, but they remain practical even with τ = 1.1.

The success of this LUSOL option led to the realization that the symmetric solvers

MA27 [26] and MA57 [24] are (already) doing the symmetric equivalent of threshold rook

pivoting, and also led to a new TRP option in the unsymmetric solver MA48.

5.2 Singular KKT systems

From the preceding discussion of rook pivoting, it is clear that MA57’s symmetric indefinite

LDLT factorization should have rank-revealing properties for KKT systems if the factor

tolerance is in the range 2 ≤ τ ≤ 4. (For reasons connected with the 1× 1 and 2× 2 block

structure of the D factor, MA57 cannot allow τ < 2.)

We examine the particular structure that QPBLU encounters within the context of

SNOPT. When the current KKT system is factorized directly, it is always of the form

K =


D1 AT

1

AT
2

A1 A2

 , (5.3)

where D1 � 0 is part of a diagonal quasi-Newton approximation to the Hessian of the

Lagrangian for the nonlinear optimization problem being solved. SNOPT enables a user

to separate linear and nonlinear variables. In (5.3), A1 and D1 are associated with free

nonlinear variables, and A2 belongs to free linear variables (including slacks). In other

words, AFRP = (A1 A2) for some permutation P .

Theorem 5.2.1. The matrix K in (5.3) with D1 � 0 is nonsingular if and only if the

following conditions hold: (A1 A2) has full row rank, and A2 has full column rank.

Proof. First assume that (A1 A2) has full row rank and A2 has full column rank. Since D

is nonsingular, it is clear from the definition of K that K has full row rank. Because K is

square, this implies that it is also nonsingular.



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 40

Next assume that K is nonsingular. Then

Kx =


D1 AT

1

AT
2

A1 A2




x1

x2

x3

 =


0

0

0


implies x = 0. We have

D1x1 + AT
1 x3 = 0

A1x1 + A2x2 = 0

AT
2 x3 = 0.

Using the nonsingularity of D1, we derive the following expressions for x1, x2, x3:

x1 = −D−1
1 AT

1 x3 (5.4)

A2x2 = A1D
−1
1 AT

1 x3 (5.5)

AT
2 x3 = 0. (5.6)

In particular, using (5.4) and (5.6) we see that if(
AT

1

AT
2

)
x3 = 0 with x3 6= 0,

then we can find x 6= 0 such that Kx = 0. Therefore, in order for K to be nonsingular(
AT

1

AT
2

)
must have full column rank, and thus (A1 A2) must have full row rank.

Since we require x3 = 0, equation (5.5) simplifies to

A2x2 = 0.

Again, if A2 does not have full column rank, then we can find x 6= 0 such that Kx = 0, a

contradiction. Therefore, in order for K to be nonsingular it must hold that (A1 A2) has

full row rank and A2 has full column rank.

As mentioned, H may not involve all variables. In particular, the QP subproblems in



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 41

SNOPT are quadratic in only the first nH variables.

Theorem 5.2.2. If the Hessian H in (1.1) involves nH < n variables, then the dimensions

of the KKT matrix in (5.3) for any nonsingular working set cannot exceed 2m + nH .

5.2.1 KKT repair with MA57

If MA57 declares that K is singular with τ reasonably close to 2, its rank-revealing prop-

erties may be trusted. Theorem 5.2.1 implies that only two repair actions are necessary.

Singularities associated with the columns of A2 can be resolved by deleting those columns

of A2. Other singularities must be associated with the rows of (A1 A2). The associated

slack variable should be made free to render the row independent of the other rows (thus

generating a new row and column of K).

5.2.2 KKT repair with LUSOL

If MA57 is not available, or its LDLT factors become too dense when τ is small enough

to give rank-revealing properties, we may apply LUSOL with TRP to the much smaller

matrices (A1 A2) and A2 in turn. TRP factors of (A1 A2) should point to dependent rows

whose slack variable should be made free. Then TRP factors of A2 may reveal dependent

columns that should be deleted.

5.3 Regularization

Rather few sparse factorization packages have rank-revealing properties (we know of LUSOL,

MA48 [27], and MA57), and for reliability they must be used with a stricter-than-normal

control on the size of the nonzeros in the factors. An alternative that eliminates the need

for rank-revealing properties is to regularize the original problem.

For convex QP problems, it is reasonable to add a small quadratic term 1
2δxT x to the

objective to ensure that H is strictly positive definite (e.g., δ = 10−6 or 10−8 for well-scaled

data). This has the desirable effect of making the optimal x unique.

To achieve uniqueness of the dual variables, we may work with a further perturbation to

the problem. For some δ > 0 and µ > 0, the QP problem with primal and dual regularization



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 42

is

minimize
x,y

φ(x, y) = cT x + 1
2xT Hx + 1

2δ‖x‖2 + 1
2µ‖y‖2

subject to Ax + µy = b,

` ≤ x ≤ u,

where y is a new primal variable that is unconstrained. It happens that y is also the dual

variable for the constraints Ax+µy = b. The gradient and Hessian of the quadratic objective

φ are

gφ =

(
c + (H + δI)x

µy

)
and Hφ =

(
H + δI

µI

)
.

As before, the active-set strategy partitions x into free and fixed variables: Ax =

AFRxFR + AFXxFX . To improve the current values of (x, y), a search direction p = (∆x,∆y)

can be computed from the quadratic program

minimize
p

gT
φp + 1

2pT Hφp

subject to
(
A µI

)
p = 0,

where the active-set strategy uses ∆xFX = 0. This becomes

minimize
∆x, ∆y

gT
FR∆xFR + µyT ∆y + 1

2δ∆xT
FR(HFR + δI)∆xFR + 1

2µ‖∆y‖2

subject to AFR∆xFR + µ∆y = 0,

where gFR = cFR + (HFR + δI)xFR. The solution is given by(
HFR + δI AT

FR

AFR −µI

)(
∆xFR

−∆y

)
= −

(
gFR −AT

FRy

0

)
. (5.7)

With H positive semidefinite and δ and µ both positive, we see that this KKT-like system

is nonsingular.

Note that µ > 0 ensures that the perturbed QP problem is always feasible. In reality the

formulation is equivalent to a classical quadratic penalty method for the constraints Ax = b.

However, treating x and y as primal variables may be somewhat unconventional, and we

see that little change should be needed to the block-LU implementation. The approach was



CHAPTER 5. RECOVERING FROM SINGULAR KKT SYSTEMS 43

not used for the numerical results in Chapter 7, but we expect that it would eliminate most

of the difficulties with singularity.



Chapter 6

Fortran implementation

QPBLU is a new Fortran 95 package for minimizing a quadratic function with linear equal-

ity and bound constraints. QPBLU implements an active-set method with an `1 penalty

function to achieve feasibility. It uses block-LU updates of an initial KKT system to repre-

sent active-set changes in addition to low-rank Hessian updates. It is intended for convex

quadratic programming problems in which the linear constraint matrix is sparse, a good

estimate of the optimal active set or solution is available in advance, and many degrees of

freedom are expected at the solution. A key feature of QPBLU is its ability to incorporate

a variety of third-party sparse linear system solvers to handle the KKT systems.

6.1 Overview

The major components of QPBLU are grouped into modules, which are collections of data,

type definitions, and procedure definitions. Abstract data types are defined for the represen-

tations of the Hessian, the KKT matrix, and the components that define the KKT matrix.

These data types and all operations that act upon them are organized into separate mod-

ules, allowing the components that make up the solver to be more easily understood, shared,

maintained, modified, or extended.

Since QPBLU has been designed with modularity in mind, most of its components can be

reused in other applications. It is also possible to modify the implementation of a data type

or module routine without altering its calling sequence. That is, while the implementation

of a routine may change, the routines calling it need not. In particular, this program

structure makes it possible to take advantage of new developments in linear algebra software,

44



CHAPTER 6. FORTRAN IMPLEMENTATION 45

especially for parallel environments, without having to re-write substantial amounts of the

code.

The modules that comprise the QPBLU package are as follows:

• qpbluSolver is the top-level module that defines the QP solver and provides the

user-callable routines.

• qpbluKKT defines the data type representing the current KKT matrix. Routines are

provided to update the current KKT matrix as columns enter and leave the working

set and as the Hessian is updated.

• blockmod defines the data type that stores representations of the block factors C,

Y , and Z of an augmented matrix K. Routines are provided to update these block

factors as additional rows and columns are appended to K.

• lumod defines the data type representing the factors of a dense matrix C. Routines

are provided to update the dense factorization when rows and columns are added to

or deleted from C, and additional routines are provided to solve systems involving C

or CT.

• spMatmod defines the sparse matrix type to store the block factors Y , Z. Routines

are provided to multiply with each matrix and its transpose and to update it as new

columns are added or existing ones deleted.

• qpbluHessian defines the data type representing an initial (sparse) Hessian and any

rank-one updates to that initial matrix.

• qpbluLinAlg is a collection of linear algebra routines.

• qpbluConstants defines constants used throughout the QPBLU package.

• qpbluOptions defines the data type to store the QPBLU solver options. Routines are

provided to read the options data from a file, to set the options to their default values,

and to display the options data.

• luInterface defines the data type to store the factors of a symmetric matrix K.

Routines are provided to factor and solve with K using a variety of third-party linear

system solvers. This module depends on additional modules to interface with each

third-party package.

• qpbluPrint defines routines to display or write solver output.

The following auxiliary modules are also available:

• qpbluScale provides routines to scale and unscale the problem data.

• qpbluSetup provides routines to read a matrix in Rutherford-Boeing format or vectors



CHAPTER 6. FORTRAN IMPLEMENTATION 46

in Matrix Market format [20]. Routines are also provided to obtain an initial point

that satisfies the linear constraints Ax = b.

The dependency structure of the modules that make up QPBLU is depicted in Figure 6.1.

Detailed descriptions of some of the QPBLU modules are provided in the sections below; in

particular, we provide details of the modules that may be reused in other applications.

6.2 QPBLU

QPBLU is callable by way of three routines:

1. qpbluBegin initializes the solver options and print streams.

2. qpbluSolver calls the quadratic programming solver. Storage for the representation

of the Hessian and KKT matrix and for any additional workspace is allocated in this

routine.

3. qpbluEnd cleans up workspace used by the solver. In particular, this deallocates the

storage of the current Hessian and KKT matrix.

Three options are available in QPBLU to initialize the iterations: cold starts, warm

starts, or hot starts. The starting type is determined by the user based on amount of

information known in advance about the solution or active set of the quadratic program.

Cold starts are intended for problems in which there is no advance knowledge of an initial

set of free or fixed variables or initial point. QPBLU attempts to find an initial set of free

variables by using LUSOL with Threshold Partial Pivoting with tolerance 1.1 to compute an

LU factorization of AT. If this procedure is able to identify a set of m linearly independent

columns of A (corresponding to m linearly independent rows of AT), then these columns

are defined to be the initial set of free variables; if not, then QPBLU is unable to proceed.

Once an initial set of free variables is identified, it is used to compute the initial starting

point x0. Let the subscript “FR” denote the indices of the columns of A corresponding to

the initial free variables, and “FX” the indices corresponding to the variables initially held

fixed. We begin by setting

xFX = min{max(lFX , 0),min(uFX , 0)}



CHAPTER 6. FORTRAN IMPLEMENTATION 47

q
p
b
l
u
S
o
l
v
e
r

q
p
b
l
u
L
i
n
A
l
g

q
p
b
l
u
H
e
s
s
i
a
n

q
p
b
l
u
K
K
T

q
p
b
l
u
O
p
t
i
o
n
s

q
p
b
l
u
P
r
i
n
t

l
u
I
n
t
e
r
f
a
c
e

l
u
L
U
S
O
L

l
u
M
A
5
7

l
u
P
A
R
D
I
S
O

l
u
S
U
P
E
R
L
U

l
u
U
M
F
P
A
C
K

c
u
m
f
p
a
c
k
.
c

c
s
u
p
e
r
l
u
.
c

d
g
s
t
r
s
L
.
c

d
g
s
t
r
s
U
.
c

b
l
o
c
k
m
o
d

l
u
m
o
d

s
p
M
a
t
r
i
x

F
ig

ur
e

6.
1:

O
rg

an
iz

at
io

n
of

m
od

ul
es

an
d

ro
ut

in
es

fo
r

Q
P

B
L
U

.
A

ll
m

od
ul

es
de

pe
nd

on
th

e
m

od
ul

e
qp

bl
uC

on
st

an
ts

(n
ot

sh
ow

n)
to

de
fin

e
re

al
an

d
in

te
ge

r
pr

ec
is

io
n.

T
he

ad
di

ti
on

al
ro

ut
in

es
ne

ed
ed

fo
r

so
lv

er
s

w
ri

tt
en

in
C

/C
+

+
ar

e
in

cl
ud

ed
.



CHAPTER 6. FORTRAN IMPLEMENTATION 48

and then solving

AFRxFR = b−AFXxFX .

Given the permutation P such that AP =
(
AFR AFX

)
, we define the initial starting point

to be

x0 = P

(
xFR

xFX

)
.

This point satisfies the linear equality constraints, though some bounds on xFR may be

violated.

Warm starts are intended for problems in which there is a good estimate of the active

set and initial point. In particular, it is ideal for the case where a linearly independent set

of m free variables and a point x0 satisfying the linear constraints is known.

Hot starts differ from warm starts in that additional information regarding the current

KKT matrix is known. Hot starts are intended to be called following either a successful

(optimal) exit from QPBLU or an exit in which the maximum number of iterations has been

reached. Enough information about the current working set, KKT matrix, and Hessian is

retained after an exit from qpbluSolver to make it possible to re-start the iterations from

the last computed point. Hot starts are also intended for the case in which the Hessian has

been modified using a rank-one update of the form

Hk+1 = (I + vk+1u
T
k+1)Hk(I + uk+1v

T
k+1) (6.1)

in between successive calls to the QP solver.

6.3 Constants

The module qpbluConstants defines global constants used throughout the package. In

particular, this module defines the real and integer precision used throughout the program

units. The Fortran intrinsics selected real kind and selected int kind are used to

provide a portable method specifying the actual precision or exponent range needed. The

default precision for real values is double (dp=selected real kind(15)), but this can easily

be altered throughout the QPBLU package by changing the value of dp in this module.



CHAPTER 6. FORTRAN IMPLEMENTATION 49

6.4 Hessian

The module qpbluHessian defines the representation of the Hessian matrix in QPBLU.

The Hessian is assumed to be symmetric and sparse. The user may input it in one of

four forms:

1. Diagonal, in which only the diagonal elements (including any zeros) of the Hessian

are input. This format is intended for cases where the Hessian is a diagonal matrix.

2. Upper triangle in compressed sparse column format with ascending row indices. Equiv-

alently, the lower triangle in compressed sparse row format with ascending column

indices.

3. Upper triangle in compressed sparse row format with ascending column indices. Equiv-

alently, the lower triangle in compressed sparse column format with ascending row

indices.

4. Upper triangle in coordinate format.

For convenience, the Hessian is converted and stored internally in either diagonal or

compressed column format if it is not already in one of these two formats. This strategy

may require additional storage for the Hessian, but it facilitates formation of the KKT

matrix.

This Hessian data type is also designed to handle rank-one updates of the form (6.1).

The rank-one update vectors uk and vk are assumed to be dense. Additional storage is

allocated and deallocated by qpbluHessian for the internal representation of these rank-

one updates.

qpbluHessian also provides routines to multiply with the current Hessian, to extract

a column of the initial Hessian, and to obtain the vectors needed to perform a rank-one

update of H within the block-LU factorization.

6.5 KKT factorization

The module qpbluKKT defines the representation of the KKT matrix in QPBLU and defines

routines that update and solve the current KKT system. The current KKT matrix is

represented in terms of the block factorization of an augmented initial KKT matrix K0.



CHAPTER 6. FORTRAN IMPLEMENTATION 50

Routines are provided to update the KKT matrix when a column of A enters or leaves

the set of free variables, incorporate a rank-one update to the Hessian, and to solve the

current KKT system. Details of the implementation of the block factors follow.

6.5.1 Overview

The Fortran module blockMod contains routines for maintaining the block factors Y , Z,

and C of a block factorization of an unsymmetric augmented matrix(
K0 V

W T D

)
=

(
L0

ZT I

)(
U0 Y

C

)
,

where K0 = L0U0. Solutions to systems involving L0 and U0 are obtained from an external

source, such as an existing factorization, and are used as input to update the block factors.

A routine for solving the system(
K0 V

W T D

)(
x1

x2

)
=

(
b1

b2

)

is not included, because operations with the block factors L0 and U0 are not assumed to

be known to this module. However, routines for multiplying with Y and Z and for solving

with C are provided to facilitate such solves from the calling routine.

Routines are available in this module to update the block factorization in the following

cases:

1. A column
(

v

d

)
is appended to K0 or the augmented matrix.

2. A row
(
wT dT

)
is appended to K0 or the augmented matrix.

3. The jth column of
(

V

D

)
is deleted from the augmented matrix.

4. The jth row of
(
W T D

)
is deleted from the augmented matrix.

This module is used to update the factorization of the augmented KKT matrix.



CHAPTER 6. FORTRAN IMPLEMENTATION 51

6.5.2 Block factors L0, U0

The factorization of the initial KKT matrix K0 = L0U0 is obtained using a third-party linear

system solver such as MA57. The module luInterface provides the top-level interface to

these third-party solvers. Details of this module and the currently incorporated third-party

solvers are provided in section 6.6.

6.5.3 Block factors Y , Z

The module spMatmod defines the sparse matrix type spMat used to represent the block

factors Y and Z. Routines are provided to multiply with these matrices and to update

them as new columns are added or existing ones deleted. spMat uses three arrays to store

the matrices in compressed sparse column format. An additional indexing array is also used

to indicate which of the stored columns of the matrix are currently in use.

New matrix columns are added by appending elements to the existing matrix representa-

tion and updating the list of columns in use. Columns are “deleted” by removing the indices

of these columns from the list of columns in use. Only a subset of the total columns stored

may actually be in use. This method for column deletion requires more storage overall than

a method that shifts array elements whenever a column is deleted, but computational time

is saved by not these copying array values.

6.5.4 Block factor C

Because the block factor C is expected to be relatively small and dense, it is efficient to

maintain a dense LU factorization of C. The module lumod uses routines based on Gaussian

elimination to maintain a factorization of a dense square matrix of the form LC = U as C

gains or loses rows and columns. The matrix factor L is well-conditioned and is the product

of stabilized elementary transformations in(
1

µ 1

)
or

(
1

1 µ

)
,

where |µ| ≤ 1 (see [71] for details). Both the square matrix L and upper triangular matrix

U are stored row-wise by lumod in 1D arrays.

Routines are available in this module to update C in the following cases:

1. A row is appended to the n× n or (n− 1)× n matrix C.



CHAPTER 6. FORTRAN IMPLEMENTATION 52

2. A column is appended to the n× n or n× (n− 1) matrix C.

3. The jth row of the n× n or (n + 1)× n matrix C is deleted.

4. The jth column of the n× n or n× (n + 1) matrix C is deleted.

Row and column additions (as well as row and column deletions) are assumed to come in

pairs, so that the matrix C remains square. New rows and columns are assumed to be

appended to C. After a column deletion, the remaining columns of C are shifted left. After

a row deletion, rows are shifted up after a row deletion. Row or column replacement may be

achieved by deleting the row or column to be replaced and appending a new row or column

to the matrix.

Column deletions in C result in a deletion of the corresponding column in U , and the

remaining columns are shifted to the left. Row deletions in C result in a deletion of the

corresponding row in U , and the remaining rows are shifted up. On average, half the

elements of U will be moved, but the copy operation is cheap because U is relatively small.

Within the QPBLU context, typically less than half the block-LU updates require deletion.

The matrix C is allowed to be a 0 × 0 matrix. The factorization of an existing n × n

matrix C is formed by starting with a 0×0 matrix and then adding rows and columns from

C to build up the factorization. The LU factors are well-defined even if C is singular, in

which case U is also singular.

6.5.5 Refactorization

As the dimensions of the block factors grow, the work needed to solve the current KKT

system also increases. It is necessary to refactorize the KKT matrix from scratch. The

KKT matrix is refactorized if one of the following situations is reached:

1. The maximum number of iterations with the factorization of the initial KKT matrix

has been reached.

2. The maximum number of columns that the block factors Y and Z are able to store

has been reached.

3. The maximum number of nonzero elements that the block factors Y and Z are able

to store has been reached.

4. The maximum dimension of the Schur complement matrix C has been reached.



CHAPTER 6. FORTRAN IMPLEMENTATION 53

5. The Schur complement may be ill-conditioned. Because the matrix L is always well-

conditioned, the condition of C is estimated using the absolute value of the ratio of

the largest and smallest diagonal elements of the matrix U .

For large systems, forming the factorization of the initial KKT matrix is much more

expensive than updating or solving with the block factors. It is preferable that the KKT

matrix be refactorized upon reaching the maximum number of iterations, rather than be-

cause of a resource limitation. These parameters determining whether the KKT matrix

is refactorized may be redefined by the user to suit the needs of a particular problem or

machine. For instance, for very large problems it may be worthwhile to increase the upper

limit of the dimensions of the Schur complement from its default value of 50 and to increase

the upper limit of iterations with the KKT matrix.

6.6 Interface to third-party solvers

Direct methods for solving linear systems of equations are ideal for the block-LU method

because they provide an efficient way of solving multiple KKT systems with the same

initial matrix and different right-hand side vectors. Once the factorization of an initial

KKT system is performed, this factorization can be reused in subsequent iterations to solve

the current KKT system as part of the block-LU method.

It is highly desirable that a variety of sparse linear system solvers be available within

QPBLU to compute the factorization K0 = L0U0. For instance, specialized LU solvers may

be used for structured problems or for novel machine architectures. Much progress has been

made in the development of efficient and robust sparse linear system solvers for distributed

or shared memory parallel machines [58, 22, 1, 2, 55]. Also, some solvers are only available

commercially [16], or to academic researchers [24, 67], or as prototypes, since many of these

solvers are still under active development.

Ideally, to take advantage of symmetry of the KKT matrix, K0 should be represented

by a symmetric indefinite factorization of the form K0 = LDLT, where L is lower triangular

and D is block diagonal, with 1× 1 or 2× 2 blocks. General unsymmetric LU factorization

routines for sparse matrices may also be used. Although these solvers do not take advantage

of symmetry, they are generally well-developed, robust, and readily available.

The module luInterface provides the interface to third-party linear solvers and defines

the data type to store data from each factorization, such as the matrix factors, options,



CHAPTER 6. FORTRAN IMPLEMENTATION 54

permutations, and the matrix K0 itself if iterative refinement is specified.

luInterface depends on additional Fortran modules, each specific to a particular third-

party solver. These solver-specific modules are based on a pre-defined template. This

generic interface model facilitates the incorporation of additional solvers. New methods

may be incorporated by creating a new module for the linear solver based on the standard

template and editing the module luInterface.

Access to all options or parameters of the linear solvers may not be available using

luInterface. Most parameters are set to each solver’s default values, usually with a call

to the solver’s own initialization routine. QPBLU defines its own default values for some

parameters, such as numerical thresholds, which may differ from the default values used by

the linear solver itself. The ability to modify some common solver options is also available

to the user, though no error checking is done within the QPBLU modules to determine

validity of the values.

An important characteristic of black-box LU solvers is the ability to solve systems of

equations with each factor L and U . For solvers where a separate solve with the factors is

unavailable, we take “L0” = I and “U0” = L0U0. Care must be taken in the selection of a

particular solver and in its parameters so that the factors of K0 do not fill in significantly.

The sparsity of L0 and U0 is reflected in the block factors Y and Z.

The matrix K0 to be factored is assumed to be symmetric, though not necessarily of the

KKT form, with the upper triangle of the matrix stored in compressed sparse row format.

Columns are to be provided in ascending order with all (possibly zero) diagonals explicitly

represented. If an unsymmetric solver is used, the representation of the whole matrix is

required. In this case, the matrix is converted to an appropriate unsymmetric format (where

both upper and lower triangular parts are expressed) within the Fortran module specific to

that unsymmetric solver.

Note that since the matrix to be factorized is symmetric, the compressed sparse row

representation of the upper triangle is equivalent to the compressed sparse column repre-

sentation of its lower triangle. Likewise, the compressed sparse row representation of the

full matrix is equivalent to its compressed sparse column representation.

The use of this particular storage format for luInterface facilitates conversion to other

matrix storage formats. Routines are available to convert a matrix from symmetric com-

pressed sparse row format to unsymmetric compressed sparse row format, and to convert

a matrix from symmetric compressed sparse row format into symmetric and unsymmetric



CHAPTER 6. FORTRAN IMPLEMENTATION 55

coordinate forms. For third-party solvers that require matrices in other formats, software

packages such as SPARSKIT [66] can be used to convert between many different sparse

matrix formats.

6.6.1 Third-party solvers

A great number of solvers for the solution of large sparse linear systems of equations have

been developed [16, 24, 1, 67, 2, 21, 22, 58, 19, 55]. Summaries of most of the available direct

solvers for sparse linear systems are maintained by Davis [18] and by Li [57]. The choice

of a particular solver depends upon several factors, including availability, performance, and

machine hardware.

A comparison of sparse symmetric solvers in the HSL mathematical software library was

performed by Gould and Scott [51, 50] in 2003. Four of these solvers (MA27 [26], MA47 [28],

MA57, MA67 [25]) were capable of handling symmetric indefinite systems, and two of them

(MA47, MA67) were designed for solving symmetric indefinite systems of the form(
A BT

B 0

)
. (6.2)

They found that MA57 was usually the fastest and most reliable HSL package, even outper-

forming MA47 and MA67 on augmented systems of the form (6.2). Robustness of the solvers

for large indefinite systems was still a concern, because a few of the test problems were not

solved by any of the solvers.

In an extended study, Gould et al. [47, 46] made a comparison of several sparse direct

solvers for symmetric systems. This study considered serial solvers or serial versions of

parallel solvers run under their default settings on a single computing platform. Only three

of the solvers studied had a success rate of 90% or better on indefinite problems: MA57,

PARDISO, and UMFPACK. Of these three, only MA57 and PARDISO are sparse symmetric

indefinite solvers. It is important to note that this study found that reliably solving large,

sparse indefinite problems remains a challenge.

While symmetric indefinite solvers are able to take advantage of symmetry, their lack of

robustness is a matter of concern. Although iterative refinement is often available as part

of a solver’s solution phase, it could add considerably to the time required in the block-

LU method because the initial factorization is used repeatedly. In addition to requiring



CHAPTER 6. FORTRAN IMPLEMENTATION 56

Package Version Authors Reference
LUSOL Mar 2006 P. E. Gill, W. Murray, M. A. Saunders, M.

H. Wright
[38]

MA57 2.2.1 I. S. Duff, HSL [24]
PARDISO 3.2 O. Schenk, K. Gärtner [69, 67, 68]
SuperLU 3.0 J. W. Demmel, J. R. Gilbert, X. S. Li [21]
UMFPACK 5.1 T. A. Davis [19]

Table 6.1: Summary of sparse linear system solvers used in this study.

Package Availability Website
LUSOL FOS http://www.stanford.edu/group/SOL/software.html
MA57 C-FA http://www.cse.scitech.ac.uk/nag/hsl/
PARDISO C-FA http://www.pardiso-project.org/
SuperLU FL http://crd.lbl.gov/~xiaoye/SuperLU/
UMFPACK FL http://www.cise.ufl.edu/research/sparse/umfpack/

Table 6.2: Obtaining the sparse linear system solvers used in this study. FOS = Free, Open
Source; C-FA = Commercial, Free to Academics; FL = Free, Licensed.

additional storage for the initial KKT matrix, iterative refinement prevents the use of the

matrix factors separately when solving linear systems. This may lead to an increased

number of total nonzero elements stored in the block factors in the block-LU algorithm (see

section 7.3). While general-purpose LU solvers are not able to exploit symmetry fully, they

typically tend to be very robust, and for this reason are included in this study.

Currently, three unsymmetric solvers (LUSOL, SuperLU, UMFPACK) and two symmetric

solvers (MA57, PARDISO) may used within QPBLU to factorize and solve with the KKT

matrix. A summary of these solvers is given in Table 6.1, and their availability is described

in Table 6.2. All of the third-party solvers currently incorporated into QPBLU are freely

available to academic researchers. Features of each solver are listed in Table 6.3, and a brief

description of each software package is provided in the subsections below.

LUSOL

LUSOL [38] is a package for solving sparse linear systems Ax = b. It allows A to be square

or rectangular, and it can update its LU factors when rows or columns of A are added,

deleted, or replaced. For its direct LU factorization, a Markowitz strategy is used for



CHAPTER 6. FORTRAN IMPLEMENTATION 57

Package Method Type Parallel Separate L & U
LUSOL Markowitz Unsym No Yes
MA57 Multifrontal Sym No Yes
PARDISO Left-right looking Sym, Sym-pat SM No
SuperLU Left-looking Unsym No Yes
UMFPACK Multifrontal Unsym No Yes

Table 6.3: Summary of features of the sparse linear solvers used in this study. Sym =
symmetric, Sym-pat = symmetric nonzero pattern with unsymmetric values, Unsym =
unsymmetric, SM = shared memory.

LUSOL parameter Value Description
luparm(1) 6 Output stream
luparm(2) −1 No output
luparm(6) 0 Threshold Partial Pivoting
parmlu(1) 2.0 max |Lij | during factor

Table 6.4: QPBLU default options for LUSOL.

suggesting sparse pivots, and a choice of threshold partial pivoting, threshold rook pivoting,

or threshold complete pivoting is provided for balancing stability and sparsity. All pivoting

options control the condition of L. A rank-revealing factorization may be obtained by

using either the rook or complete pivoting strategies with a rather strict threshold pivoting

parameter. This will produce a factorization in which the condition and rank of U reflect

the condition and rank of A. LUSOL is used as the basis factorization package for such

optimization software as lp solve [11], MINOS, SNOPT, and SQOPT. LUSOL is available as

open source FORTRAN 77 or ANSI C libraries.

QPBLU default options for LUSOL are listed in Table 6.4.

MA57

MA57 [24] is a package for the solution of symmetric indefinite systems and is part of the

HSL mathematical software library. This package supersedes the earlier HSL package MA27

and incorporates Level 2 and Level 3 BLAS. MA57 uses a multifrontal approach to compute

a factorization of the form A = LDLT, where the matrix L is unit lower triangular and D

is a block diagonal matrix with blocks of order 1 or 2. To help preserve sparsity during the

symbolic factorization phase, either the Approximate Minimum Degree (AMD) algorithm or



CHAPTER 6. FORTRAN IMPLEMENTATION 58

MA57 parameter Value Description
cntl(1) 0.25 Threshold pivoting tolerance
icntl(1-3) 6 Print streams
icntl(5) 0 No output
icntl(6) 5 Automatic choice of MeTiS or AMD
icntl(15) 1 Scaling on

Table 6.5: QPBLU default options for MA57.

the nested dissection algorithm using MeTiS are used to choose a row and column ordering.

In the 2005 study by Gould et al., MA57 was found to be one of the leading solvers for

symmetric indefinite systems. While MA57 was more cautious in the factorization phase

than PARDISO, this paid off in a faster solution phase.

MA57 has been incorporated into such optimization software as OOQP [32] and IPOPT [73],

and is now part of Matlab (version 7.5) [61] for sparse indefinite linear systems. MA57 is

available commercially and may be licensed free to academic researchers.

QPBLU default options for MA57 are listed in Table 6.5.

PARDISO

PARDISO [69, 67, 68] is a package for the solution of large sparse symmetric and unsymmetric

linear systems on shared memory multiprocessors using a combination of left- and right-

looking Level 3 BLAS supernode techniques. The default ordering is a modified version of

MeTiS, although a minimum degree ordering is also available. PARDISO employs a static

pivoting technique that does not alter the ordering suggested by its analyze phase during

the numerical factorization. In order to be able to use such a potentially unstable ordering,

some pivots may be perturbed during the factorization, and iterative refinement is then

required to solve the linear system.

In the study 2005 study by Gould et al., PARDISO was found to be one of the leading

solvers for symmetric indefinite systems. This study also found that if pivots were perturbed

during the factorization phase, then a solve using PARDISO could be two or three times

slower than the comparable MA57 solve because of the refinement steps needed. The static

pivoting strategy used by PARDISO results in a faster, less cautious factorization phase,

but as a consequence results in a slower solution phase if iterative refinement steps are

necessary. On a few problems the faster, less cautious factorization strategy also led to



CHAPTER 6. FORTRAN IMPLEMENTATION 59

PARDISO parameter Value Description
iparm(2) 2 Pivot ordering – nested dissection

from MeTiS
iparm(3) 1 Number of processors
iparm(10) 10−8 Threshold for perturbed pivots
iparm(11) & iparm(13) 0 Scalings and matchings off
MSGLVL 0 No output

Table 6.6: QPBLU default options for PARDISO.

inaccurate solutions that did not converge with iterative refinement.

PARDISO is available commercially and may be licensed free by academic researchers.

QPBLU default options for PARDISO are listed in Table 6.6.

SuperLU

SuperLU [21] is a library for the solution of large, sparse general systems of linear equa-

tions on high performance machines. It is available in a sequential version for conven-

tional machines (SuperLU) and in parallel versions for shared memory multiprocessors (Su-

perLU MT [22]) or distributed memory parallel processors (SuperLU DIST [58]). All three

libraries use variations of Gaussian elimination. The sequential version implements Gaus-

sian elimination with partial pivoting using a left-looking supernodal technique and Level

2 BLAS to optimize performance. SuperLU uses a preordering phase for sparsity that is

completely separate from the numerical factorization, allowing the matrix columns to be

preordered before the factorization using either the supplied routines or a user-supplied

ordering routine.

Separate solves with the matrix factors L and U are not available in the standard

SuperLU distribution. Two additional routines dgstrsL and dgstrsU have been provided

by SuperLU developer Xiaoye Li to supplement the SuperLU package. These new routines

allow for the solution of systems using L, LT, U , or UT.

SuperLU is widely used in research and commercial applications. It has been integrated

into such solvers as PETSc [5] and is used commercially in Mathematica [65] and COMSOL

Multiphysics [17]. SuperLU is available as open source C code with some licensing restrictions.

QPBLU default options for SuperLU are listed in Table 6.7.



CHAPTER 6. FORTRAN IMPLEMENTATION 60

SuperLU parameter Value Description
options.ColPerm COLAMD Column ordering approximate mini-

mum degree ordering
options.DiagPivotThresh 0.5 Threshold pivoting tolerance
options.Equil YES Scale rows and columns
options.PrintStat NO No output

Table 6.7: QPBLU default options for SuperLU.

UMFPACK parameter Value Description
Control [UMFPACK PIVOT TOLERANCE] 0.50 Threshold pivot tolerance

Table 6.8: QPBLU default options for UMFPACK.

UMFPACK

UMFPACK [19] is a package for sparse LU factorization of an unsymmetric matrix A, where

A can be square, rectangular, singular, nonsingular, real, or complex. Only square systems

can be used to solve Ax = b and related systems. UMFPACK utilizes a column pre-ordering

technique with right-looking unsymmetric-pattern mulitfrontal numerical factorization.

Though not a symmetric solver, UMFPACK offers a symmetric pivoting strategy for

(nearly) symmetrically structured matrices. UMFPACK uses Level 3 BLAS to obtain high

performance on a wide range of machines. UMFPACK has been incorporated into Matlab

(versions 6.5+) to factor and solve sparse unsymmetric (or symmetric) systems of equations.

UMFPACK is available as open source ANSI/ISO C code under the GNU Lesser General

Public License (versions 3.2-5.1) or the GNU General Public License (versions 5.2+). QPBLU

default options for UMFPACK are listed in Table 6.8.



Chapter 7

Computational results

7.1 Problem data

Our QP test problems are derived from linear programming test problems available from

the University of Florida Sparse Matrix Collection [18]. These LP problems have been

converted to the standard form

minimize
x∈Rn

cTx

subject to Ax = b

l ≤ x ≤ u.

These test problems include the LPnetlib data and the linear programming test problems

of Hans Mittelmann [63] and Csaba Mészáros [62].

The LPnetlib data consists of 109 feasible and 29 infeasible LP test problems. Of the

feasible problems, 34 have been found to have numerical rank r < m, where m is the row

dimension of A. Estimation of numerical rank was performed by factorizing the matrices A

using LUSOL with a factor tolerance of 1.1 using threshold partial pivoting. A summary of

the LPnetlib test problems used in this thesis is given in Table 7.3.

Quadratic programming test problems have been generated from these LP test problems

by including a quadratic term 1
2xTHx in the objective. In particular, we use H = ∆I for

some positive scalar ∆. In general, increasing ∆ leads to more degrees of freedom at the

solution.

61



CHAPTER 7. COMPUTATIONAL RESULTS 62

7.1.1 Scaling

The Fortran module qpbluScale contains routines that may be used if row and column

scalings of the linear constraint matrix A are desired. The scaling routine scaleData

makes several passes through the columns and rows of A, computing the geometric mean

of the nonzeros in each (scaled) column or row and using that as the new scale factor.

These scalings are applied to A and the rest of the problem data. Optionally, the objective

function may also be scaled by max(1, ‖c‖∞).

For all test problems used in this chapter, the problem data and objective function have

been scaled using qpbluScale.

7.2 Computing platform

Numerical results were obtained using a 3.00 GHz Dell Precision 470 workstation with an

Intel Xeon processor and 2 GB of RAM. Fortran 77 and Fortran 95 codes were compiled

using gfortran 4.1.2 with full optimization. Serial versions of parallel solvers were used,

and wherever possible, optimized BLAS routines were provided by GotoBLAS [45]. All CPU

times are in seconds and do not include the time required to load the problem data.

7.3 Growth of nonzeros in Y , Z

To emphasize the importance of separate solves with the LU factors of K0 in maintaining

sparsity in both block factors Y and Z, we begin by examining the accumulation of nonzero

elements in these matrices when separate solves are available and when they are not. The

majority of the linear solvers currently incorporated into QPBLU provide the ability to

solve separately with each LU factor of K0 (see Table 6.3). As mentioned, separate solves

with L and U are not available as standard routines within the SuperLU package, but have

been derived for QPBLU by modifying the SuperLU solve routine dgstrs. To demonstrate

the effect that these separate solves have, we consider QPBLU using SuperLU as the linear

system solver, both with and without separate L and U solves. For these examples, we

solve
minimize

x∈Rn
cTx + 1

2xTHx

subject to Ax = b

l ≤ x ≤ u



CHAPTER 7. COMPUTATIONAL RESULTS 63

using data from the LPnetlib collection with H = ∆I for nonnegative values of the scalar

∆.

Recall that columns of Y and Z are not explicitly deleted in this implementation of

QPBLU. Instead, columns are marked as having been “deleted,” so we are examining total

number of nonzero elements generated in Y and Z since the last refactorization. Note

that the number of nonzero elements stored in the block factors drops to zero upon a

refactorization of the KKT matrix.

Figure 7.1 shows the accumulation of nonzero elements using ∆ = 1 on the scsd6

dataset. The constraint matrix A of this test problem has 147 rows, 1350 columns, and

4, 316 nonzero elements. Separate solves with L and U maintain a similar degree of growth

in the number of elements in both Y and Z, while non-separate solves maintain sparsity

primarily in the block factor Y . The total number of nonzeros stored in both Y and Z is

significantly less in the case where separate solves are available.

Figure 7.2 shows a more extreme difference in the total number of nonzeros stored.

This example uses the stocfor2 dataset and ∆ = 1. The constraint matrix A of this test

problem has 2, 157 rows, 3045 columns, and 9, 357 nonzero elements. In this case it is clear

that separate solves with L0 and U0 maintain a greater degree of sparsity in both Y and Z,

and requires less storage overall.

Figures 7.3 and 7.4 use the fit2d dataset with ∆ = 100 to demonstrate the growth of

nonzero elements in Y and Z as the number of free variables increases at each iteration.

The constraint matrix A of this test problem has 25 rows, 10, 524 columns, and 129, 042

nonzero elements. In this case, the initial KKT matrix is bordered at each iteration by rows

and columns of the Hessian and constraint matrix. Each factorized KKT matrix is larger

in dimension than the one preceding it. As a result, the block factors Y and Z always gain

a column, and these additional columns contain an increasing number of nonzero elements

when either separate or non-separate solves are used. It is clear in Figure 7.4 that despite

the increasing number of nonzeros elements, the total number of nonzeros stored is still less

when using separate solves with L and U .

While each third-party linear system solver may generate different LU factors, these

results with SuperLU are typical of what happens when separate L and U solves are and are

not available. The ability to solve separately with these factors of K0 is an important feature

for linear system solvers used within QPBLU. Whenever possible, separate solves should be

utilized. These separate solves help to maintain sparsity in both Y and Z and also help to



CHAPTER 7. COMPUTATIONAL RESULTS 64

Figure 7.1: Example of the accumulation of nonzero elements stored in the block factors
Y and Z when SuperLU is used within QPBLU on the scsd6 test problem with H = I. In
the top figure, separate solves with the LU factors of SuperLU are not used. In the bottom
figure, separate solves with L and U are utilized.



CHAPTER 7. COMPUTATIONAL RESULTS 65

Figure 7.2: Example of the accumulation of nonzero elements stored in the block factors Y
and Z when SuperLU is used within QPBLU on the stocfor2 test problem with H = I. In
the top figure, separate solves with the LU factors of SuperLU are not used. In the bottom
figure, separate solves with L and U are utilized.



CHAPTER 7. COMPUTATIONAL RESULTS 66

Figure 7.3: Example of the accumulation of nonzero elements stored in the block factors Y
and Z when SuperLU is used within QPBLU on the fit2d test problem with H = 100I. In
the top figure, separate solves with the LU factors of SuperLU are not used. In the bottom
figure, separate solves with L and U are utilized.



CHAPTER 7. COMPUTATIONAL RESULTS 67

Figure 7.4: Example of the accumulation of the total number of nonzero elements stored
in both block factors Y and Z with and without separate solves with the LU factors of
SuperLU on the fit2d dataset with H = 100I.



CHAPTER 7. COMPUTATIONAL RESULTS 68

decrease the amount of storage needed to store both of the block factors. Keeping the block

factors as sparse as possible decreases the likelihood that K0 will need to be refactorized

because of a storage limitation.

7.4 Background on performance profiles

Performance profiles provide a means of comparing the performance of several solvers at once

on a large set of problems while eliminating possible biases, such as the potential influence

of a small number of problems on the benchmarking process. We use this technique to

compare the performance of QPBLU using each of the linear solvers LUSOL, MA57, PARDISO,

SuperLU, and UMFPACK, and to compare the performance of QPBLU to SNOPT.

This method of comparison was initially developed by Billups, Dirkse, and Ferris [13],

who used ratios of runtimes to compare large-scale mixed complementarity problems. Their

approach was later expanded by Dolan and Moré [23] to incorporate the use of a performance

profile as a tool for evaluating and comparing the performance of optimization software.

Their approach is outlined here.

We define ns to be the number of solvers s and np to be the number of problems p. Using

computing time as a measure of performance, results are obtained by running a solver s on

a set P of problems. We define

tp,s = computing time needed to solve problem p with solver s.

The performance ratio is defined to be the ratio of the resource time of a given solver to

the best time of all solvers:

ρp,s =
tp,s

min{tp,s : 1 ≤ s ≤ ns}
.

A parameter ρM is defined such that ρM ≥ ρp,s for all solvers s and problems p. The value

of a performance ratio ρp,s = ρM if and only if solver s does not solve problem p. This

parameter eliminates the need to exclude any test problem from consideration, and gives

credit to solvers that successfully solve a problem for which other solvers may fail.

To obtain an overall assessment of the performance of a solver, the cumulative distribu-

tion function of the performance ratio

Ps(τ) =
1
np

size{p ∈ P : ρp,s ≤ τ}



CHAPTER 7. COMPUTATIONAL RESULTS 69

is considered. Ps(τ) is the probability that the performance ratio is within a factor of τ

of the best possible ratio. That is, it is the fraction of problems that a solver can solve if

allowed a maximum resource time of τ times the minimum resource time for each problem.

The value 1− Ps(τ) is the fraction of problems that the solver cannot solve within a factor

τ of the best solver.

In particular, Ps(1) is the probability that solver s will win in comparison to the others.

This value may be used to compare solvers if only the number of wins is to be considered.

As τ becomes large, Ps(τ) reflects the overall probability that a solver will be successful.

Thus, if we are interested in solvers with a high probability of success regardless of the

amount of time required, the values of Ps(ρM ) should be examined.

A log scale of the performance profile may be used to show all activity with τ < ρM

while preserving the behavior of τ near 1. That is, we plot

1
np

size{p ∈ P : log2(ρp,s) ≤ τ}

versus τ .

7.5 Pivot threshold for third-party solvers

Packages for sparse matrix factorizations strive not only for sparsity in the matrix factors,

but also for numerical stability and efficiency. Often, a threshold pivoting parameter may

be specified to strike the right balance between a sparse yet less stable factorization and a

factorization that is more stable yet more costly.

The default pivot tolerance defined by a particular solver may not be ideal for a given

type of problem or application. Since the block-LU method uses the factorization K0 =

L0U0 repeatedly in order to update the block factors and to compute the search direction at

each iteration, obtaining a stable factorization is of vital importance. In an effort to evaluate

the effect that the choice of pivot tolerance has on the block-LU method, we examine the

performance of QPBLU using a given solver as the pivot tolerance varies. CPU time is used

as the metric in our performance profiles.

As an example, we apply QPBLU to test problems generated from the LPnetlib collection

using H = I with MA57 as the linear system solver. The threshold pivoting value for MA57

is allowed to vary within its range in order to investigate its effect on the outcome of the

QP solve. Performance profiles for this test are given in Figure 7.5 and the full set of results



CHAPTER 7. COMPUTATIONAL RESULTS 70

is given in Table 7.4.

Figure 7.5: Performance profile for QPBLU using MA57 with various values of the threshold
pivoting tolerance on the LPnetlib test data with H = I.

The MA57 default pivot tolerance of 0.01 yields the least efficient performance for this

QP problem on this dataset, with the least overall likelihood of success and often longer

computation time. This tolerance allows the elements of L to be as large as 100. Pivot

tolerances of 0.20 or greater give the best performance in this example. The results for pivot

tolerances of 0.20, 0.30, 0.40, 0.50 are comparable in terms of overall success. Computation

time for these pivot tolerances did not vary greatly, though pivot tolerances of 0.20 and 0.30

yielded somewhat faster solve times.

As we can see from this example, the choice of the pivot tolerance of the linear solver

plays an important role in the success and performance of QPBLU. For this reason, QPBLU

uses default values of the pivot tolerance that may differ from the defaults of the linear

solver itself. QPBLU also provides the user a means of adjusting these default values.



CHAPTER 7. COMPUTATIONAL RESULTS 71

7.6 Comparisons of third-party solvers

QPBLU currently provides an interface to five different third-party solvers for sparse linear

systems, and it has been designed to facilitate the inclusion of many more. The user’s choice

of a particular solver depends on many things, including availability, machine hardware, and

most importantly, performance. In this section, we use performance profiles to compare the

performance of QPBLU using each of the available linear solvers.

We apply QPBLU with each of the solvers to QP problems generated from the LPnetlib

collection with H = I. The QPBLU default options for each of the solvers is used (see

Tables 6.4 to 6.8 on pages 57–60). The performance profile for this experiment, using CPU

times as the metric, is given in Figure 7.6. Full results of this test are provided in Table 7.5.

We see that for this test set, QPBLU-LUSOL generally had the fastest CPU times and

was among the most reliable of the solvers used. QPBLU-PARDISO fared the worst in this

example, with the slowest computation time and lowest overall probability of success. The

additional time required by QPBLU-PARDISO is probably because of the static pivoting

approach used by PARDISO and the resulting iterative refinement steps that may have been

required for a solve with the initial KKT matrix.

Note that QPBLU was not able to solve all of the test problems, with any of the solvers.

For several problems (notably the pilot models), the KKT matrix was determined to be

ill-conditioned or near-singular by the linear system solvers. In these cases, since KKT

repair has not yet been implemented, QPBLU exits and the problem is not solved.

7.7 Comparisons to SQOPT

Using the results of section 7.6, we select the top performing linear system solver (LUSOL)

to compare QPBLU with SQOPT, an active-set quadratic programming solver that uses a

null-space method suitable for large-scale problems. SQOPT is most efficient when there are

few degrees of freedom. When the number of superbasic variables nS becomes very large

(nS ≥ 2000, say), it uses a conjugate-gradient method to solve the required linear systems,

so the performance may degrade significantly. The comparison of QPBLU-LUSOL is also of

interest because SQOPT makes use of LUSOL to maintain the LU factors of its basis matrix.

Both solvers were warm-started from the same point with the same active set. The

initial point was obtained by first finding a square, nonsingular basis matrix B from the



CHAPTER 7. COMPUTATIONAL RESULTS 72

Figure 7.6: Performance profile for QPBLU on QP problems derived from the LPnetlib
collection using the Hessian H = I. Each of the available linear system solvers LUSOL,
MA57, SuperLU, PARDISO, and UMFPACK was used within QPBLU. CPU time is used as
the performance metric in this example.



CHAPTER 7. COMPUTATIONAL RESULTS 73

columns of A. Given a suitable permutation matrix P , we can write

AP =
(
B N

)
,

x0 = P

(
xB

xN

)
,

Ax = BxB + NxN = b.

The initial starting point was computed by setting xN to values satisfying its bounds (lN ≤
xN ≤ uN ) and then solving BxB = b − NxN . The point x0 then satisfies the equality

constraints Ax = b, though some bounds xB may be violated. The columns of A that form

N correspond to the initial set of fixed variables, and the columns of A that form B are

the initial set of free variables. LUSOL was used on AT with a Threshold Partial Pivoting

tolerance of 1.1 to generate the basis matrix B and to compute x0.

Using the rail507 data from the Mittelmann LP collection and varying the value of ∆,

we are able to generate quadratic programs in which the number of superbasic variables at

the solution varies from 0 to 6749. The constraint matrix A for this test problem has 507

rows, 63, 516 columns, and 40, 9856 nonzero elements. The results from this experiment are

detailed in Table 7.1 and Figure 7.7.

In this example, SQOPT is much faster than QPBLU-LUSOL when the number of degrees

of freedom is less than 2000. As nS increases, the CPU time required by SQOPT increases

significantly, while the increase in CPU time for QPBLU-LUSOL is much more gradual.

As an additional example, we compare SQOPT to QPBLU-LUSOL and QPBLU-MA57 on

quadratic programs derived from the deter problem set from the Mészáros LP collection

using H = I. This set consists of nine problems, with the number of degrees of freedom

at the solution ranging from 2369 to 8998. The results of this experiment are detailed in

Table 7.2 and Figure 7.8.

For this problem set, we see that both QPBLU-LUSOL and QPBLU-MA57 require much

less CPU time than SQOPT when the number of superbasic variables is very large.

From this experiment and the previous using the rail507 data, we can see that there

is no predetermined point or value of nS at which QPBLU is to be preferred over SQOPT.

In general, however, SQOPT will become less efficient once nS > 2000 because of its use of

conjugate-gradient iterations.



CHAPTER 7. COMPUTATIONAL RESULTS 74

∆ nS SQOPT QPBLU-
LUSOL

0.0 0 98.5 669.4
0.1 634 32.3 268.7
0.2 885 26.3 216.4
0.3 1031 25.5 191.8
0.4 1199 24.1 182.7
0.5 1349 26.3 177.9
0.6 1498 27.3 171.6
0.7 1598 28.7 181.8
0.8 1690 32.3 174.3
0.9 1813 31.5 171.0
1.0 1903 35.3 171.2
2.0 2735 131.0 187.9
3.0 3377 211.7 207.1
4.0 3796 288.2 222.8
5.0 4125 330.8 227.1
6.0 4394 395.7 224.1
7.0 4617 459.3 224.9
8.0 4804 494.5 232.0
9.0 4977 525.7 239.0

10.0 5093 534.9 250.3
20.0 5913 715.7 279.0
30.0 6236 830.4 271.5
40.0 6386 866.6 277.4
50.0 6472 895.9 277.0
60.0 6521 951.0 289.3
70.0 6570 947.5 264.4
80.0 6601 908.1 289.8
90.0 6626 918.9 307.2

100.0 6648 932.3 294.1
110.0 6659 941.5 297.4
120.0 6679 955.0 298.8
130.0 6690 957.8 303.0
140.0 6696 972.9 313.4
150.0 6707 942.5 326.4
160.0 6719 993.7 329.2
170.0 6725 982.2 340.0
180.0 6736 977.1 329.8
190.0 6744 1021.0 333.0
200.0 6749 994.3 324.5

Table 7.1: CPU time in seconds required by QPBLU-LUSOL and by SQOPT for solving the
quadratic programming problems generated from the rail507 problem of the Mittelmann
LP collection with H = ∆I. The number of degrees of freedom at the solution is increased
by increasing the value of ∆ from 0 to 200.



CHAPTER 7. COMPUTATIONAL RESULTS 75

Figure 7.7: CPU time in seconds required by QPBLU-LUSOL and by SQOPT for solving the
QP generated from the rail507 problem of the Mittelmann LP collection with H = ∆I.
The number of degrees of freedom at the solution is increased by increasing the value of ∆
from 0 to 200.



CHAPTER 7. COMPUTATIONAL RESULTS 76

Figure 7.8: CPU time in seconds required by SQOPT, QPBLU-LUSOL, and QPBLU-MA57
on the deter dataset from the Mészáros LP collection using H = I.



CHAPTER 7. COMPUTATIONAL RESULTS 77

problem m n nnz nS SQOPT QPBLU- QPBLU-
MA57 LUSOL

deter0 1923 5,468 11,173 2369 24.6 14.4 7.8
deter4 3235 9,133 19,231 3792 83.7 43.5 24.9
deter8 3831 10,905 22,299 4600 174.9 57.3 31.7
deter6 4255 12,113 24,771 5053 226.8 74.7 41.5
deter5 5103 14,529 29,715 6159 361.2 115.1 63.2
deter1 5527 15,737 32,187 6562 459.6 130.0 72.1
deter2 6095 17,313 35,731 7177 550.2 158.2 91.5
deter7 6375 18,153 37,131 7398 621.4 169.4 94.8
deter3 7647 21,777 44,547 8998 944.1 256.2 146.7

Table 7.2: CPU times in seconds required by QPBLU-LUSOL, QPBLU-MA57 and SQOPT on
the deter problem set of the Mészáros LP collection. The data is ordered by the number
of superbasic variables at the solution. The number of suberbasics is given by the value
nS . The values of m, n, nnz give the number of rows, number of columns, and number of
nonzeros of the constraint matrix A.



CHAPTER 7. COMPUTATIONAL RESULTS 78

Table 7.3:

Name m n nnz

80bau3b 2262 12061 23264

adlittle 56 138 424

afiro 27 51 102

agg 488 615 2862

agg2 516 758 4740

agg3 516 758 4756

bandm 305 472 2494

beaconfd 173 295 3408

blend 74 114 522

bnl2 2324 4486 14996

capri 271 482 1896

czprob 929 3562 10708

d2q06c 2171 5831 33081

e226 223 472 2768

etamacro 400 816 2537

fffff800 524 1028 6401

finnis 497 1064 2760

fit1d 24 1049 13427

fit1p 627 1677 9868

fit2d 25 10524 129042

fit2p 3000 13525 50284

ganges 1309 1706 6937

gfrd pnc 616 1160 2445

grow15 300 645 5620

grow22 440 946 8252

grow7 140 301 2612

israel 174 316 2443

kb2 43 68 313

lotfi 153 366 1136

maros 846 1966 10137

maros r7 3136 9408 144848

osa 07 1118 25067 144812

osa 14 2337 54797 317097

osa 30 4350 104374 604488

osa 60 10280 243246 1408073

perold 625 1506 6148

Continued on the next page



CHAPTER 7. COMPUTATIONAL RESULTS 79

Table 7.3: (continued)

Name m n nnz

pilot 1441 4860 44375

pilot4 410 1123 5264

pilot87 2030 6680 74949

pilot ja 940 2267 14977

pilot we 722 2928 9265

pilotnov 975 2446 13331

recipe 91 204 687

sc105 105 163 340

sc205 205 317 665

sc50a 50 78 160

sc50b 50 78 148

scagr25 471 671 1725

scagr7 129 185 465

scfxm1 330 600 2732

scfxm2 660 1200 5469

scfxm3 990 1800 8206

scrs8 490 1275 3288

scsd1 77 760 2388

scsd6 147 1350 4316

scsd8 397 2750 8584

sctap1 300 660 1872

sctap2 1090 2500 7334

sctap3 1480 3340 9734

share1b 117 253 1179

share2b 96 162 777

stair 356 614 4003

standata 359 1274 3230

standmps 467 1274 3878

stocfor1 117 165 501

stocfor2 2157 3045 9357

stocfor3 16675 23541 76473

woodw 1098 8418 37487

Table 7.3: Summary of the LPnetlib problems used in this thesis. The number of rows, columns, and

nonzeros of the constraint matrix A are given by m, n, and nnz.



CHAPTER 7. COMPUTATIONAL RESULTS 80

Table 7.4:

δ

Name 0.01 0.10 0.20 0.30 0.40 0.50

80bau3b

adlittle 3.30E−02 3.30E−02 3.30E−02 3.40E−02 3.70E−02 3.70E−02

afiro 3.00E−03 3.00E−03 3.00E−03 3.00E−03 4.00E−03 4.00E−03

agg 1.21E−01 1.20E−01 1.19E−01 1.20E−01 1.24E−01 1.23E−01

agg2 5.16E−01 5.15E−01 5.19E−01 5.28E−01 5.28E−01

agg3 5.01E−01 5.01E−01 5.05E−01 5.16E−01 5.13E−01

bandm 5.01E−01 5.00E−01 4.94E−01 4.92E−01 4.95E−01 4.95E−01

beaconfd 4.70E−02 4.70E−02 4.60E−02 4.60E−02 5.00E−02 4.80E−02

blend 2.30E−02 2.40E−02 2.40E−02 2.40E−02 2.70E−02 2.60E−02

bnl2

capri 4.03E−01 4.06E−01 4.08E−01 4.18E−01 4.19E−01

czprob 2.28E+00 2.29E+00 2.27E+00 2.31E+00 2.30E+00 2.30E+00

d2q06c

e226 3.38E−01 3.34E−01 3.33E−01 3.36E−01 3.47E−01 3.43E−01

etamacro 1.55E+00 1.47E+00 1.38E+00 1.39E+00 1.38E+00

fffff800 1.96E+00 2.00E+00 2.02E+00 2.03E+00 2.03E+00

finnis 1.08E+00 1.07E+00 1.07E+00 1.07E+00 1.08E+00 1.09E+00

fit1d 6.83E−01 6.98E−01 6.72E−01 6.78E−01 6.93E−01 7.13E−01

fit1p 3.14E+00 3.18E+00 3.14E+00 3.17E+00 3.18E+00 3.19E+00

fit2d 8.29E+01 8.11E+01 8.11E+01

fit2p 2.87E+02 2.89E+02 2.89E+02 2.90E+02 2.91E+02 2.92E+02

ganges 1.79E+00 1.82E+00 1.79E+00 1.80E+00

gfrd pnc 1.44E+00 1.44E+00 1.39E+00 1.41E+00 1.40E+00 1.41E+00

grow15 7.11E−01 7.33E−01 7.29E−01 7.32E−01

grow22 1.45E+00 1.47E+00 1.48E+00

grow7 1.61E−01 1.61E−01 1.56E−01 1.58E−01 1.56E−01 1.57E−01

israel 2.73E−01 2.69E−01 2.58E−01 2.59E−01 2.58E−01 2.57E−01

kb2 1.00E−02 9.00E−03 9.00E−03 9.00E−03 1.00E−02 1.00E−02

lotfi 1.87E−01 1.95E−01 1.88E−01 1.90E−01 1.89E−01 1.90E−01

maros

maros r7

osa 07 2.10E+01 2.07E+01 2.08E+01 2.10E+01 2.08E+01 2.10E+01

osa 14 1.14E+02 1.14E+02 1.14E+02 1.15E+02 1.14E+02 1.14E+02

osa 30 4.23E+02 4.23E+02 4.25E+02 4.26E+02 4.24E+02 4.22E+02

osa 60 2.54E+03 2.55E+03 2.53E+03 2.54E+03 2.54E+03 2.53E+03

Continued on the next page



CHAPTER 7. COMPUTATIONAL RESULTS 81

Table 7.4: (continued)

δ

Name 0.01 0.10 0.20 0.30 0.40 0.50

perold

pilot

pilot4 2.88E+00 2.89E+00 3.04E+00

pilot87

pilot ja

pilot we

pilotnov

recipe 7.00E−03 5.00E−03 5.00E−03 5.00E−03 5.00E−03 5.00E−03

sc105 2.40E−02 2.40E−02 2.30E−02 2.20E−02 2.20E−02 2.30E−02

sc205 7.30E−02 7.20E−02 7.10E−02 7.10E−02 7.10E−02 7.20E−02

sc50a 9.00E−03 6.00E−03 6.00E−03 5.00E−03 5.00E−03 6.00E−03

sc50b 8.00E−03 6.00E−03 7.00E−03 6.00E−03 6.00E−03 6.00E−03

scagr25 8.67E−01 8.75E−01 8.74E−01 8.74E−01 8.77E−01 8.77E−01

scagr7 6.80E−02 6.70E−02 6.40E−02 6.40E−02 6.40E−02 6.40E−02

scfxm1 3.90E−01 3.75E−01 3.74E−01 3.75E−01 3.76E−01 3.75E−01

scfxm2 1.61E+00

scfxm3 3.38E+00 3.23E+00 3.22E+00

scrs8 8.62E−01 8.74E−01 8.69E−01 9.21E−01 9.18E−01

scsd1 1.53E−01 1.43E−01 1.22E−01 1.11E−01 1.12E−01 1.11E−01

scsd6 4.08E−01 3.82E−01

scsd8 2.55E+00 2.65E+00 2.77E+00 2.71E+00 2.70E+00

sctap1 3.17E−01 2.97E−01 3.00E−01 2.98E−01 3.01E−01 3.00E−01

sctap2 2.82E+00 2.86E+00 2.87E+00 2.81E+00 2.83E+00 2.83E+00

sctap3 5.11E+00 5.12E+00 5.07E+00 5.12E+00 5.09E+00 5.09E+00

share1b 1.38E−01 1.38E−01 1.39E−01 1.39E−01 1.41E−01 1.42E−01

share2b 4.20E−02 4.40E−02 4.10E−02 4.20E−02 4.20E−02 4.10E−02

stair 9.73E−01 9.71E−01 9.59E−01 9.58E−01 9.49E−01 9.49E−01

standata 2.01E−01 2.02E−01 2.03E−01 1.98E−01 1.99E−01 1.99E−01

standmps 7.48E−01 7.80E−01 7.42E−01 7.83E−01 7.35E−01 7.32E−01

stocfor1 5.00E−03 5.00E−03 5.00E−03 6.00E−03 5.00E−03 5.00E−03

stocfor2 1.23E+00 1.23E+00 1.24E+00 1.23E+00 1.23E+00 1.23E+00

stocfor3 8.20E+01 8.25E+01 8.19E+01 8.21E+01 8.23E+01 8.23E+01

woodw 1.15E+01 1.10E+01 1.13E+01 1.17E+01 1.16E+01

Table 7.4: CPU times for QPBLU-MA57 on the LPnetlib test problems using the Hessian H = I. Various

values of the threshold pivoting tolerance δ were used within MA57.



CHAPTER 7. COMPUTATIONAL RESULTS 82

Table 7.5:

Name LUSOL MA57 SuperLU PARDISO UMFPACK

80bau3b 2.760E+01 6.007E+01

adlittle 2.400E−02 3.500E−02 3.699E−02 5.799E−02 3.200E−02

afiro 3.000E−03 3.999E−03 3.999E−03 4.999E−03 4.000E−03

agg 7.099E−02 1.200E−01 1.490E−01 2.890E−01 9.598E−02

agg2 3.260E−01 5.159E−01 6.649E−01 1.129E+00

agg3 2.990E−01 5.019E−01 6.619E−01

bandm 2.750E−01 4.929E−01 6.849E−01 1.022E+00 4.149E−01

beaconfd 2.600E−02 4.699E−02 4.999E−02 6.599E−02 4.099E−02

blend 1.700E−02 2.400E−02 2.600E−02 4.199E−02 2.200E−02

bnl2

capri 1.980E−01 4.059E−01 4.879E−01 3.230E−01

czprob 1.637E+00 2.281E+00 2.772E+00 6.250E+00 1.789E+00

d2q06c 1.881E+01

e226 1.960E−01 3.349E−01 3.919E−01 6.959E−01 2.930E−01

etamacro 6.059E−01 1.384E+00 1.912E+00 2.709E+00 1.038E+00

fffff800 1.977E+00

finnis 5.829E−01 1.075E+00 1.242E+00 2.434E+00 8.049E−01

fit1d 6.149E−01 6.769E−01 6.929E−01 8.319E−01 6.729E−01

fit1p 2.140E+00 3.181E+00 1.404E+01 7.545E+00 2.641E+00

fit2d 8.003E+01 8.341E+01

fit2p 3.033E+02 2.918E+02 8.207E+03 3.334E+02

ganges 8.709E−01 1.801E+00 2.117E+00 4.684E+00 1.290E+00

grow15 5.539E−01 1.018E+00 6.929E−01

grow22 2.233E+00 1.558E+00

grow7 1.190E−01 1.570E−01 2.000E−01 1.490E−01

israel 1.530E−01 2.580E−01 3.889E−01 5.119E−01 2.240E−01

kb2 8.999E−03 9.999E−03 9.999E−03 3.300E−02 1.100E−02

lotfi 1.240E−01 1.890E−01 2.690E−01 4.069E−01 1.840E−01

maros

maros r7

osa 07 1.840E+01 2.087E+01 4.538E+01 3.276E+01 2.003E+01

osa 14 1.032E+02 1.142E+02 3.326E+02 1.672E+02 1.117E+02

osa 30 3.892E+02 4.277E+02 2.094E+03 6.170E+02 4.029E+02

osa 60 2.306E+03 2.533E+03 1.537E+04 3.675E+03 2.747E+03

perold

pilot

Continued on the next page



CHAPTER 7. COMPUTATIONAL RESULTS 83

Table 7.5: (continued)

Name LUSOL MA57 SuperLU PARDISO UMFPACK

pilot4

pilot ja

pilot we

pilot87

pilotnov

recipe 3.999E−03 6.000E−03 6.999E−03 9.999E−03 5.999E−03

sc105 1.500E−02 2.300E−02 2.599E−02 4.499E−02 2.100E−02

sc205 4.399E−02 7.199E−02 7.699E−02 1.580E−01 5.899E−02

sc50a 4.999E−03 6.999E−03 6.999E−03 9.998E−03 5.999E−03

sc50b 5.999E−03 7.999E−03 7.998E−03 1.100E−02 5.999E−03

scagr25 4.399E−01 8.769E−01 1.012E+00 2.016E+00 6.369E−01

scagr7 3.999E−02 6.499E−02 7.099E−02 1.250E−01 5.999E−02

scfxm1 2.010E−01 3.769E−01 4.489E−01

scfxm2 7.989E−01 1.562E+00 3.947E+00 1.320E+00

scfxm3 1.687E+00 3.380E+00 4.143E+00 7.526E+00 2.761E+00

scrs8 4.509E−01 8.919E−01 9.908E−01 2.083E+00 6.499E−01

scsd1 9.499E−02 1.120E−01 1.220E−01 1.800E−01 1.120E−01

scsd6 2.800E−01 3.030E−01 3.669E−01

scsd8 1.703E+00 3.287E+00 2.227E+00

sctap1 1.810E−01 3.020E−01 3.879E−01 6.839E−01 2.690E−01

sctap2 1.486E+00 2.861E+00 4.785E+00 7.328E+00 2.446E+00

sctap3 2.726E+00 5.063E+00 9.122E+00 1.357E+01 4.459E+00

share1b 9.498E−02 1.440E−01 1.540E−01 1.250E−01

share2b 3.199E−02 4.299E−02 4.899E−02 7.699E−02 3.999E−02

stair 5.979E−01 9.609E−01 1.630E+00 8.769E−01

standata 1.320E−01 2.000E−01 2.490E−01 4.699E−01 1.650E−01

standmps 4.429E−01 7.859E−01 1.168E+00 1.762E+00 5.709E−01

stocfor1 6.000E−03 5.999E−03 7.000E−03 9.999E−03 6.999E−03

stocfor2 6.139E−01 1.229E+00 1.487E+00 3.320E+00 9.759E−01

stocfor3 3.972E+01 8.217E+01 9.288E+01 2.322E+02 6.100E+01

woodw 6.582E+00 1.102E+01 2.304E+01 1.317E+01 9.508E+00

Table 7.5: CPU times for QPBLU on QP problems derived from the LPnetlib collection using the Hessian

H = I. Each of the available linear system solvers LUSOL, MA57, SuperLU, PARDISO, and UMFPACK
was used within QPBLU.



Chapter 8

Contributions, conclusions, and

future work

QPBLU is a new active-set quadratic programming solver based on block-LU updates of the

KKT system. The block-LU approach used by QPBLU complements null-space methods for

quadratic programming problems, because it is relatively efficient for problems with many

degrees of freedom.

The Fortran 95 modules that comprise the QPBLU package are portable and may be re-

used in other applications. In particular, the module luInterface is extensible and provides

a single interface to third-party solvers to factorize and solve with a sparse symmetric

matrix. Currently, interfaces to five different linear system solvers have been incorporated

into this module. The potential exists for many more solvers to be added, allowing QPBLU

to take immediate advantage of any advances in methods for sparse linear algebra. The

luInterface module enables the user to call many different linear system solvers with a

single calling routine, facilitating the comparison of third-party solvers within the context

of a QP solver.

The use of different third-party solvers within QPBLU has provided some insight into

useful properties of linear system solvers, and we hope that this may contribute to the

development of features within these solvers. As the example with SuperLU in Chapter 7

shows, separate solves with L and U are needed to help maintain sparsity in the block-LU

factors. Ideally, such solves would be able to take full advantage of the sparse right-hand side

vectors that arise in our QP method. It is also important to be able to obtain rank-revealing

L or U factors in order to implement the KKT repair of Chapter 5.

84



CHAPTER 8. CONTRIBUTIONS, CONCLUSIONS, AND FUTURE WORK 85

LUSOL and MA57 already have rank-revealing properties that point to dependent rows

and columns in a given KKT matrix K0. Once singularity is indicated, currently only LUSOL

(and recent versions of MA48) can pinpoint singular columns in AT and A2 of section 5.2.

Ideally, future unsymmetric solvers would provide similar rank-revealing pivot options for

rectangular matrices.

The block-LU approach used by QPBLU is an effective method for machines with ad-

vanced architecture. The formation and solution of the KKT system is the primary source

of computational work at each iteration, and the use of a parallel linear system solver within

QPBLU is an easy and effective way to take advantage of distributed or shared memory par-

allel machines. The sparse matrix multiplications with block-LU factors Y and Z are also

parallelizable, and as demonstrated in [29], Y and Z can also be designed to take advantage

of machine hardware.

QPBLU has a great deal of potential, but additional testing with larger and more varied

problems is still needed. In addition, since the QP algorithm used by QPBLU is based on an

inertia-controlling method, it is possible to extend the solver to more general (non-convex)

QP problems. Results given in this thesis are obtained using a special form of the Hessian,

and more varied test problems would give greater insight into its performance, especially

when using different third-party solvers. An interface to the CUTEr [48] testing environment

would provide access to many hundreds of test problems, such the Maros and Mészáros QP

test set [59].

It will also be interesting to examine the performance of this solver when it is used

within an SQP solver. In particular, we wish to examine its performance when used within

the SQP solver SNOPT when the number of superbasic variables is very large and when a

sequence of limited memory Hessians of the form Hk+1 = (I + vk+1u
T
k+1)Hk(I + uk+1v

T
k+1)

is used. Efforts to integrate QPBLU into SNOPT are currently underway.

Much work could be done to improve the robustness of QPBLU, as it was unable to solve,

with any third-party solver, several of the problems generated from the LPnetlib data. This

was usually because the KKT matrix was determined to be ill-conditioned or near-singular

by the third-party solver. Although the general reliability of solvers on large indefinite

systems is still a matter of concern [46, 47, 50, 51], the robustness of QPBLU should be

improved using KKT repair, as already mentioned. Alternatively, other techniques, such as

the regularization approach of section 5.3 or proximal point methods, could be applied.



Bibliography

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.,

23(1):15–41, 2001.

[2] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear

equation solvers. SIAM J. Matrix Anal. Appl., 20:513–561, 1998.

[3] Aspen Technology, Inc. Aspen Target. http://www.aspentech.com.

[4] J. Atkociunas. Quadratic programming for degenerate shakedown problems of bar

structures. Mechanics Research Communications, 23(2):195–203, 1996.

[5] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman

McInnes, B. F. Smith, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/

petsc, 2001.

[6] R. H. Bartels. A stabilization of the simplex method. Numer. Math., 16:414–434, 1971.

[7] R. Bartlett and L. Biegler. QPSchur: A dual, active-set, Schur-complement method

for large-scale and structured convex quadratic programming. Optimization and Engi-

neering, 7(1):5–32, 2006.

[8] R. A. Bartlett, A. Wächter, and L. T. Biegler. Active set vs. interior point strategies

for model predictive control. In Proceedings of the American Control Conference, pages

4229–4233, June 2000.

[9] G. Bashein and M. Enns. Computation of optimal controls by a method combin-

ing quasi-linearization and quadratic programming. International Journal of Control,

16(1):177–187, 1972.

86



BIBLIOGRAPHY 87

[10] H. Y. Benson and D. F. Shanno. An exact primal-dual penalty method approach to

warm-starting interior-point methods for linear programming. Comput. Optim. Appl.,

38(3):371–399, 2007.

[11] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve 5.5. http://lpsolve.

sourceforge.net/5.5/.

[12] J. T. Betts and P. D. Frank. A sparse nonlinear optimization algorithm. J. Optim.

Theory and Applics., 82(3):519–541, 1994.

[13] S. C. Billups, S. P. Dirkse, and M. C. Ferris. A comparison of algorithms for large-scale

mixed complementarity problems. Comp. Optim. Appl., 7:3–25, 1997.

[14] J. Bisschop and A. Meeraus. Matrix augmentation and partitioning in the updating of

the basis inverse. Math. Program., 13(3):241–254, 1977.

[15] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and

unconstrained testing environment. ACM Trans. Math. Software, 21(1):123–160, 1995.

[16] The Boeing Company. BCSLIB-EXT. http://www.boeing.com/phantom/

bcslib-ext.

[17] COMSOL. COMSOL Mulitphysics. http://www.comsol.com.

[18] T. A. Davis. The University of Florida sparse matrix collection. http://www.cise.

ufl.edu/research/sparse/matrices. Submitted to SIAM J. Matrix Anal. Appl.

[19] T. A. Davis. Algorithm 832: UMFPACK v4.3, an unsymmetric-pattern multifrontal

method with a column pre-ordering strategy. ACM Trans. Math. Software, 30(2), 2004.

[20] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[21] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal

approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl., 20(3):720–755, 1999.

[22] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal

algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4):915–

952, 1999.



BIBLIOGRAPHY 88

[23] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Math. Program., 91(2), 2002.

[24] I. S. Duff. MA57: a Fortran code for the solution of sparse symmetric definite and

indefinite systems. ACM Trans. Math. Software, 30(2):118–144, 2004.

[25] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. The factorization of

sparse symmetric indefinite matrices. IMA J. Numer. Anal., 11:181–204, 1991.

[26] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. ACM Trans. Math. Software, 9(3):302–325, 1983.

[27] I. S. Duff and J. K. Reid. The design of MA48: a code for the direct solution of sparse

unsymmetric linear systems of equations. ACM Trans. Math. Software, 22(2):187–226,

1996.

[28] I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of

indefinite sparse symmetric linear systems. ACM Trans. Math. Software, 22(2):227–257,

1996.

[29] S. Eldersveld and M. A. Saunders. A block-LU update for large-scale linear program-

ming. SIAM J. Matrix Anal. Appl., 13(1):191–201, 1992.

[30] M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector

machines. SIAM J. Optim., 13(3):783–804, 2002.

[31] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 1987.

[32] E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.

ACM Trans. Math. Software, 29:58–81, 2003.

[33] P. E. Gill. Optimization course notes for Math 271. University of California, San Diego.

[34] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for QPOPT (version 1.0): a

Fortran package for quadratic programming. Technical Report NA 95–1, University of

California, San Diego, 1995.

[35] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale

constrained optimization. SIAM Review, 47(1):99–131, 2005.



BIBLIOGRAPHY 89

[36] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SQOPT 7: Software for

large-scale linear and quadratic programming. Technical Report NA 05–1, University

of California, San Diego, 2005.

[37] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Sparse matrix methods in

optimization. SIAM J. Sci. and Statist. Comput., 5(3), 1984.

[38] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Maintaining LU factors of

a general sparse matrix. Linear Algebra and its Applications, 88/89:239–270, 1987.

[39] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical anti-cycling

procedure for linearly constrained optimization. Math. Program., 45(3):437–474, 1989.

[40] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method

for sparse quadratic programming. In M. G. Cox and S. J. Hammarling, editors, Reliable

Numerical Computation, pages 113–138. Oxford University Press, 1990.

[41] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-controlling methods

for general quadratic programming. SIAM Review, 33(1):1–36, 1991.

[42] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly

quadratic programs. Math. Program., 27:1–33, 1983.

[43] G. H. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University

Press, third edition, 1996.

[44] J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme.

Math. Program., 83(1):125–143, 1998.

[45] K. Goto. GotoBLAS. http://www.tacc.utexas.edu/resources/software.

[46] N. I. M. Gould, Y. Hu, and J. A. Scott. Complete results from a numerical evaluation of

sparse direct solvers for the solution of large, sparse, symmetric linear systems of equa-

tions. Numerical Analysis Internal Report 2005-1, Rutherford Appleton Laboratory,

2005.

[47] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct

symmetric solvers for the solution of large sparse, symmetric linear systems of equations.

Technical Report RAL-TR-2005-005, Rutherford Appleton Laboratory, 2005.



BIBLIOGRAPHY 90

[48] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and SifDec: A constrained and

unconstrained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–

394, 2003.

[49] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe For-

tran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Software,

29(4):353–372, December 2003.

[50] N. I. M. Gould and J. A. Scott. Complete results from a numerical evaluation of HSL

packages for the direct solution of large sparse, symmetric linear systems of equations.

Numerical Analysis Group Internal Report 2003-2, Rutherford Appleton Laboratory,

2003.

[51] N. I. M. Gould and J. A. Scott. A numerical evaluation of HSL packages for the direct

solution of large sparse, symmetric linear systems of equations. ACM Trans. Math.

Software, 30(3):300–325, 2004.

[52] N. I. M. Gould and Ph. L. Toint. A quadratic programming bibliography. Numerical

Analysis Group Internal Report 2000-1, Rutherford Appleton Laboratory, 2000.

[53] N. I. M. Gould and Ph. L. Toint. Numerical methods for large-scale non-convex

quadratic programming. In A. H. Siddiqi and M. Kočvara, editors, Trends in Industrial

and Applied Mathematics, 2002.

[54] N. I. M. Gould and Ph. L. Toint. Preprocessing for quadratic programming. Math.

Program., 100(1):95–132, 2004.

[55] A. Gupta, M. Joshi, and V. Kumar. WSMP: A high-performance serial and parallel

sparse linear solver. Technical Report RC 22038 (98932), IBM T. J. Watson Research

Center, 2001.

[56] ILOG, Inc. ILOG CPLEX: High-performance software for mathematical programming

and optimization. http://www.ilog.com/products/cplex/.

[57] X. S. Li. Direct solvers for sparse matrices. http://crd.lbl.gov/~xiaoye/SuperLU/

SparseDirectSurvey.pdf, 2006.



BIBLIOGRAPHY 91

[58] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse

direct solver for unsymmetric linear systems. ACM Trans. Math. Software, 29(2):110–

140, 2003.

[59] I. Maros and C. Mészáros. A repository of convex quadratic programming problems.

Optim. Meth. Software, 11&12:671–681, 1999.

[60] A. D. Martin. Mathematical programming of portfolio selections. Management Science,

1(2):152–166, 1955.

[61] The MathWorks. MATLAB. http://www.mathworks.com.

[62] C. Mészáros. Linear programming problems. http://www.sztaki.hu/~meszaros/

public_ftp/lptestset.

[63] H. Mittelmann. Linear programming problems. http://plato.asu.edu/ftp/

lptestset.

[64] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization.

Math. Program., 14:41–72, 1978.

[65] Wolfram Research. Mathematica. http://www.wolfram.com.

[66] Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations, version 2. http:

//www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html, 1994.

[67] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations

with PARDISO. Future Generation Computer Systems, 20(3):475–487, 2004.

[68] O. Schenk and K. Gärtner. On fast factorization pivoting methods for symmetric

indefinite sytems. Elec. Trans. Numer. Anal., 23:158–179, 2006.

[69] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left-

right looking strategy on shared memory multiprocessors. BIT, 40(1):158–176, 2000.

[70] C. Schmid and L. T. Biegler. Quadratic programming methods for reduced Hessian

SQP. Comp. Chem. Eng., 18(9), 1994.

[71] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.



BIBLIOGRAPHY 92

[72] S. J. Wright. Applying new optimization algorithms to model predictive control. In

Chemical Process Control-V, volume 93 of AIChE Symposium Series, Number 316,

pages 147–155. CACHE Publications, 1997.

[73] A. Wchter and L. T. Biegler. On the implementation of a primal-dual interior point

filter line search algorithm for large-scale nonlinear programming. Math. Program.,

106(1):25–57, 2006.

[74] E. A. Yildirim and S. J. Wright. Warm-start strategies in interior-point methods for

linear programming. SIAM J. Optim., 12(3):782–810, 2002.


